首页> 外文会议>Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2006 >Feature Extraction and Fusion for Protein Structure Identification in Cryo-Electron Microscopic Images Using Independent Component Analysis and the Projection-Slice Synthetic Filter
【24h】

Feature Extraction and Fusion for Protein Structure Identification in Cryo-Electron Microscopic Images Using Independent Component Analysis and the Projection-Slice Synthetic Filter

机译:利用独立分量分析和投影切片合成滤波器对电子显微图像中的蛋白质结构进行特征提取和融合

获取原文
获取原文并翻译 | 示例

摘要

In this paper we utilize the Projection-Slice Synthetic Discriminant Function Filters, PSDF, in concert with an Independent Component Analysis technique to simultaneously reduce the data set that represents each of the training images and to emphasize subtle differences in each of the training images. These differences are encoded into the PSDF in order to improve the filter sensitivity for the recognition and identification of protein images formed from a cryo-electron microscopic imaging process. The PSDF and Independent Component Analysis provide a premise not only for the identification of the class of structures under consideration, but also for detecting the orientation of the structures in these images. The protein structures found in cryo-electron microscopic imaging represent a class of objects that have low resolution and contrast and subtle variation. This poses a challenge in design of filters to recognize these structures due to false targets that often have similar characteristics as the protein structures. The incorporation of a component analysis and eigen values conditioning in forming the filter provides an enhanced approach of de-correlating images prior to their incorporation into the filter. We present our method of filter synthesis and the results of the application of this modified filter to a protein structure recognition problem.
机译:在本文中,我们结合独立分量分析技术,使用了Projection-Slice综合判别函数滤波器PSDF,以同时减少代表每个训练图像的数据集,并强调每个训练图像中的细微差异。将这些差异编码到PSDF中,以提高过滤器的灵敏度,以识别和识别由低温电子显微成像过程形成的蛋白质图像。 PSDF和独立分量分析不仅为确定所考虑的结构类别提供了前提,而且为检测这些图像中结构的方向提供了前提。在低温电子显微镜成像中发现的蛋白质结构代表了一类分辨率低,对比度低和细微变化的物体。由于通常具有与蛋白质结构相似特征的错误靶标,因此在设计用于识别这些结构的过滤器时提出了挑战。在形成滤波器时结合成分分析和特征值调节提供了一种在将图像结合到滤波器中之前使图像去相关的增强方法。我们介绍了我们的过滤器合成方法,以及将这种改进的过滤器应用于蛋白质结构识别问题的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号