首页> 外文会议>Multiple classifier systems >Comparison of Bagging and Boosting Algorithms on Sample and Feature Weighting
【24h】

Comparison of Bagging and Boosting Algorithms on Sample and Feature Weighting

机译:基于样本和特征权重的装袋和提升算法的比较

获取原文
获取原文并翻译 | 示例

摘要

We compared boosting with bagging in different strengths of learning algorithms for improving the performance of the set of classifiers to be fused. Our experimental results showed that boosting worked much with weak algorithms and bagging, especially feature-based bagging, worked much with strong algorithms. On the basis of these observations we developed a mixed fusion method in which randomly chosen features are used with a standard boosting method. As a result, it was confirmed that the proposed fusion method worked well regardless of learning algorithms.
机译:我们在不同强度的学习算法中比较了增强和装袋,以提高要融合的分类器的性能。我们的实验结果表明,提升功能在算法较弱的情况下非常有效,而装袋(特别是基于特征的装袋)在强大的算法下则非常有效。基于这些观察,我们开发了一种混合融合方法,其中随机选择的特征与标准增强方法一起使用。结果,证实了所提出的融合方法不管学习算法如何都有效。

著录项

  • 来源
    《Multiple classifier systems》|2009年|22-31|共10页
  • 会议地点 Reykjavik(IS);Reykjavik(IS)
  • 作者单位

    Division of Computer Science Graduate School of Information Science and Technology Hokkaido University, Sapporo 060-0814, Japan;

    Division of Computer Science Graduate School of Information Science and Technology Hokkaido University, Sapporo 060-0814, Japan;

    Division of Computer Science Graduate School of Information Science and Technology Hokkaido University, Sapporo 060-0814, Japan;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP274.3;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号