首页> 外文会议>Multimodal pattern recognition of social signals in human - computer - interaction >Motion History of Skeletal Volumes and Temporal Change in Bounding Volume Fusion for Human Action Recognition
【24h】

Motion History of Skeletal Volumes and Temporal Change in Bounding Volume Fusion for Human Action Recognition

机译:人体活动识别的边界体积融合中骨骼体积的运动历史和时间变化

获取原文
获取原文并翻译 | 示例

摘要

Human action recognition is an important area of research in computer vision. Its applications include surveillance systems, patient monitoring, human-computer interaction, just to name a few. Numerous techniques have been developed to solve this problem in 2D and 3D spaces. However 3D imaging gained a lot of interest nowadays. In this paper we propose a novel view-independent action recognition algorithm based on fusion between a global feature and a graph based feature. We used the motion history of skeleton volumes; we compute a skeleton for each volume and a motion history for each action. Then, alignment is performed using cylindrical coordinates-based Fourier transform to form a feature vector. A dimension reduction step is subsequently applied using PCA and action classification is carried out by using Mahalonobis distance, and Linear Discernment analysis. The second feature is the temporal changes in bounding volume, volumes are aligned using PCA and each divided into sub volumes then temporal change in volume is calculated and classified using Logistic Model Trees. The fusion is done using majority vote. The proposed technique is evaluated on the benchmark IXMAS and i3DPost datasets where results of the fusion are compared against using each feature individually. Obtained results demonstrate that fusion improve the recognition accuracy over individual features and can be used to recognize human actions independent of view point and scale.
机译:人体动作识别是计算机视觉研究的重要领域。它的应用包括监视系统,患者监视,人机交互等。已经开发出许多技术来解决2D和3D空间中的这个问题。但是,如今3D成像引起了很多兴趣。在本文中,我们提出了一种基于全局特征和基于图的特征融合的新颖的独立于视图的动作识别算法。我们使用了骨架体积的运动历史。我们为每个体积计算一个骨架,为每个动作计算一个运动历史。然后,使用基于圆柱坐标的傅里叶变换执行对齐以形成特征向量。随后使用PCA进行降维步骤,并通过使用Mahalonobis距离和线性识别分析进行动作分类。第二个特征是包围体积的时间变化,使用PCA对齐体积,将体积划分为子体积,然后使用Logistic模型树计算和分类体积的时间变化。融合是使用多数票完成的。在基准IXMAS和i3DPost数据集上对提出的技术进行了评估,在这些数据集中将融合的结果与单独使用每个功能进行了比较。获得的结果表明,融合提高了单个特征的识别精度,可用于识别独立于视点和比例的人类动作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号