首页> 外文会议>Modelling, simulation, and identification >ADAPTIVE CONTROL FOR UNDERWATER VEHICLE-MANIPULATOR SYSTEM BASED ON FUZZY CMAC NEURAL NETWORKS
【24h】

ADAPTIVE CONTROL FOR UNDERWATER VEHICLE-MANIPULATOR SYSTEM BASED ON FUZZY CMAC NEURAL NETWORKS

机译:基于模糊CMAC神经网络的水下机器人系统自适应控制。

获取原文
获取原文并翻译 | 示例

摘要

Underwater Vehicle-Manipulator System (UVMS) is a multi-body system with float base. It is difficult to control the vehicle for its dynamic uncertainty and the multi-joint manipulator's disturbances. Due to it is not easy to get the manipulator's hydrodynamics and vehicle's propeller model, an adaptive controller based fuzzy CMAC is proposed. The neural network's inputs are motion status of vehicle and manipulator, and its outputs are the control voltage of the vehicle's propellers. The control errors are decreasing by the controller's self-study with the disturbances of the manipulator. The paper presents the controller's design and stability analysis. To improve the robustness of the controller, input compensation is added. Experiment results demonstrate the effectiveness of the proposed controller.
机译:水下车辆操纵器系统(UVMS)是具有浮子基座的多体系统。由于其动态不确定性和多关节机械手的干扰,很难控制车辆。由于难以获得机械臂的流体力学和车辆的螺旋桨模型,提出了一种基于自适应控制器的模糊CMAC算法。神经网络的输入是车辆和操纵器的运动状态,其输出是车辆螺旋桨的控制电压。控制器的自学习随着操纵器的干扰而减小了控制误差。本文介绍了控制器的设计和稳定性分析。为了提高控制器的鲁棒性,添加了输入补偿。实验结果证明了该控制器的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号