首页> 外文会议>Modelling, Simulation and Identification; Intelligent Systems and Control >ARTIFICIAL NEURAL NETWORKS FOR MODELING THE DRYING PROCESS DYNAMICS OF SCHINUS TEREBINTHIFOLIA RADDI FRUIT
【24h】

ARTIFICIAL NEURAL NETWORKS FOR MODELING THE DRYING PROCESS DYNAMICS OF SCHINUS TEREBINTHIFOLIA RADDI FRUIT

机译:人工神经网络模拟松材线虫干果的干燥过程动力学

获取原文
获取原文并翻译 | 示例

摘要

In this study, topologies of Artificial Neural Networks (ANNs) for predicting the drying kinetics of Schinus terebinthifolia Raddi fruit (pink peppercorns) were investigated. Pink peppercorn, also called poivre rose in French, is among the most sophisticated condiments in international cuisine. The experiments were performed in a pilot thin-layer dryer (fixed bed dryer) at different air temperatures (40 to 70ºC) and drying air velocity (0.4 to 0.8 m/s). The database was expanded using data interpolation by cubic splines. In the modeling were used feedforward ANN formed by three layers. The activation function for hidden neurons was the hyperbolic tangent. For the ANN training, the Levenberg-Marquardt algorithm with Bayesian regularization was used. The coefficient of determination (R~2) and the root-mean-square error (RMSE) were used to compare the performance of the ANNs. The influences of database, input neurons, and activation function were also investigated. The results show that the ANN successfully represented the drying kinetics of S. terebinthifolia Raddi fruits.
机译:在这项研究中,人工神经网络(ANNs)的拓扑结构,用于预测Schinus terebinthifolia Raddi水果(粉红色胡椒)的干燥动力学。粉红胡椒粉(在法国也称为poivre玫瑰)是国际美食中最精致的调味品之一。实验在中试薄层干燥机(固定床干燥机)中在不同的空气温度(40至70ºC)和干燥空气速度(0.4至0.8 m / s)下进行。通过三次样条线使用数据插值扩展了数据库。在建模中,使用了由三层组成的前馈ANN。隐藏神经元的激活功能是双曲正切。对于ANN训练,使用具有贝叶斯正则化的Levenberg-Marquardt算法。确定系数(R〜2)和均方根误差(RMSE)用于比较人工神经网络的性能。还研究了数据库,输入神经元和激活功能的影响。结果表明,人工神经网络成功地代表了S. terebinthifolia Raddi果实的干燥动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号