【24h】

Cognitive performance application

机译:认知性能应用

获取原文

摘要

This work shows that combining the techniques of neural networking and predictive analytics with the fundamental concepts of computing performance optimization is genuine in many ways. It has the potentials to: (1) reduce infrastructure upgrade costs (2) reduce human interactions, by enabling the system to learn, analyze, and make decisions on its own, and (3) generalize the solutions to other performance problems. This paper attempts to tackle a JVM performance optimization from a different dimension and in a way that can be scaled to other common utilized resources, such as file systems, static contents, search engines, web services...etc. It shows how to build a framework that monitors the performance metrics to determine patterns leading to bottleneck incidents and then benchmark these performance metrics. The framework uses artificial neural network in its core to accomplish this first steps with immediate benefit of eliminating the need to a domain expert analyzing which of these metrics is more important or has more weight on constituting the bottleneck condition, and hence enable the system to deal with more ambiguous situations. The framework uses an analytics engine, to establish predictive patterns between the system bottleneck and library of factors in order to establish an early alert system and thus enhancing the weight of the bottleneck signal. Finally the framework acts in defense when the deadlock signal is triggered from the learning and/or the analytics engine through streaming down concurrent transactions into a temporarily queuing data structure. We put our model into a test and built a simulation to quantify the added benefit of each component of our framework. The results are proven to demonstrate the immediate benefit of our framework and open doors for other future work.
机译:这项工作表明,将神经网络和预测分析的技术与计算性能优化的基本概念相结合,在许多方面是真实的。它具有潜力:(1)降低基础设施升级成本(2)降低人体的相互作用,通过使系统学习,分析,并作出对自己的,和(3)推广的解决方案,其他性能问题。本文试图从不同的维度,在可扩展到其他共同利用的资源,如文件系统,静态内容,搜索引擎,网络服务...等方式解决一个JVM性能优化。它展示了如何构建监视性能指标的框架,以确定导致瓶颈事件的模式,然后基准这些性能指标。该框架在其核心中使用人工神经网络来实现这一步骤,即时消除域专家分析的需要立即受益,这些指标在构成瓶颈状况方面的重量更为重要或更重量,因此使系统能够处理有更含糊的情况。该框架使用分析引擎,在系统瓶颈和因素库之间建立预测模式,以建立早期警报系统,从而提高瓶颈信号的重量。最后,当通过将并发事件从学习和/或分析引擎触发到临时排队数据结构时,当死锁信号从学习和/或分析引擎触发时,框架在防御中行为。我们将模型放入测试中并建立了模拟,以量化框架每个组件的添加益处。结果证明,展示我们框架和开放门的直接利益,以便其他未来的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号