首页> 外文会议>AIAA guidance, navigation, and control conference >RLV Reentry Trajectory Optimization through Hybridization of an Improved GA and a SQP Algorithm
【24h】

RLV Reentry Trajectory Optimization through Hybridization of an Improved GA and a SQP Algorithm

机译:改进GA与SQP算法融合的RLV再入弹道优化。

获取原文

摘要

A hybrid optimization method combining an improved genetic algorithm with sequential quadratic programming is proposed for the optimum design of the reentry trajectory of a reusable launch vehicle. The advantages of the genetic algorithm of insensitivity to the initial values and global convergence and the advantages of sequential quadratic programming of rapid convergence and high precision were obtained. The weaknesses of the genetic algorithm, including oscillation of the solution, and the weaknesses of sequential quadratic programming, including a small convergence radius, sensitivity to the initial values, and ease of falling into a local extremum, were overcome. An improved genetic algorithm with a simulated-annealing penalty function was employed to search the design space globally, sequential quadratic programming was used for local optimization, and direct collocation was used to discretize the optimal-control problem into a nonlinear programming problem. A global high-precision solution could be obtained without an initial guess because of the reduced sensitivity to the initial values. The results show the correctness, effectiveness, and robustness of the algorithm.
机译:针对可重复使用运载火箭的再入轨迹的优化设计,提出了一种将遗传算法与序列二次规划相结合的混合优化方法。获得了对初始值和全局收敛性不敏感的遗传算法的优点,以及快速收敛和高精度的顺序二次规划的优点。克服了遗传算法的弱点,包括解的振荡,以及顺序二次规划的弱点,包括较小的会聚半径,对初始值的敏感性以及易于陷入局部极值的缺点。采用改进的具有模拟退火罚函数的遗传算法全局搜索设计空间,采用顺序二次规划进行局部优化,直接配置将最优控制问题离散化为非线性规划问题。由于对初始值的敏感性降低,因此无需进行初始猜测就可以获得全局高精度解决方案。结果表明了该算法的正确性,有效性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号