首页> 外文会议>International Conference on Medical Image Computing and Computer-Assisted Intervention >CorrSigNet: Learning CORRelated Prostate Cancer SIGnatures from Radiology and Pathology Images for Improved Computer Aided Diagnosis
【24h】

CorrSigNet: Learning CORRelated Prostate Cancer SIGnatures from Radiology and Pathology Images for Improved Computer Aided Diagnosis

机译:CORRSIGNET:学习相关前列腺癌签名从放射学和病理图像改善计算机辅助诊断

获取原文
获取外文期刊封面目录资料

摘要

Magnetic Resonance Imaging (MRI) is widely used for screening and staging prostate cancer. However, many prostate cancers have subtle features which are not easily identifiable on MRI, resulting in missed diagnoses and alarming variability in radiologist interpretation. Machine learning models have been developed in an effort to improve cancer identification, but current models localize cancer using MRI-derived features, while failing to consider the disease pathology characteristics observed on resected tissue. In this paper, we propose CorrSigNet, an automated two-step model that localizes prostate cancer on MRI by capturing the pathology features of cancer. First, the model learns MRI signatures of cancer that are correlated with corresponding histopathol-ogy features using Common Representation Learning. Second, the model uses the learned correlated MRI features to train a Convolutional Neural Network to localize prostate cancer. The histopathology images are used only in the first step to learn the correlated features. Once learned, these correlated features can be extracted from MRI of new patients (without histopathology or surgery) to localize cancer. We trained and validated our framework on a unique dataset of 75 patients with 806 slices who underwent MRI followed by prostatectomy surgery. We tested our method on an independent test set of 20 prostatectomy patients (139 slices, 24 cancerous lesions, 1.12M pixels) and achieved a per-pixel sensitivity of 0.81, specificity of 0.71, AUC of 0.86 and a per-lesion AUC of 0.96 ± 0.07, outperforming the current state-of-the-art accuracy in predicting prostate cancer using MRI.
机译:磁共振成像(MRI)广泛用于筛选和分期前列腺癌。然而,许多前列腺癌具有微妙的特征,在MRI上不容易识别,导致放射科学的诊断和惊人的变异性。已经开发了机器学习模型,以提高癌症鉴定,但目前模型使用MRI衍生的特征使癌症定位,同时未考虑在切除的组织上观察到的疾病病理特征。在本文中,我们提出了Consignet,通过捕获癌症的病理特征来定位前列腺癌的自动化两步模型。首先,该模型学会了使用常见代表学习的与相应的组织疗法 - ogy特征相关的MRI签名。其次,该模型使用学习相关的MRI功能来训练卷积神经网络来定位前列腺癌。组织病理学图像仅在学习相关特征的第一步中使用。一旦了解,可以从新患者的MRI(没有组织病理学或手术)来提取这些相关特征来定位癌症。我们培训并验证了我们在75名患者的独特数据集上验证了我们的框架,其中806个切片,接受了MRI,然后是前列腺切除术手术。我们在独立的20例前列腺切除术患者(139片,24个癌变病变,1.12m像素)上测试了我们的方法,并实现了0.81的每像素敏感性,0.71,AUC的0.86的特异性和0.96的每病灶AUC ±0.07,优于使用MRI预测前列腺癌的最新的最先进的准确性。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号