首页> 外文会议>International Conference on Automatic Face and Gesture Recognition >Slim-CNN: A Light-Weight CNN for Face Attribute Prediction
【24h】

Slim-CNN: A Light-Weight CNN for Face Attribute Prediction

机译:SLIM-CNN:面部属性预测的轻质CNN

获取原文

摘要

We introduce a computationally-efficient CNN micro-architecture Slim Module to design a lightweight deep neural network, Slim-CNN, for face attribute prediction. Slim Modules are constructed by assembling depthwise separable convolutions with pointwise convolution to produce a computationally efficient module. The problem of facial attribute prediction is challenging because of the large variations in pose, background, illumination, and dataset imbalance. We stack multiple Slim Modules to devise a compact CNN, which still maintains very high accuracy. Additionally, Slim-CNN has a very low memory footprint, which makes it suitable for mobile and embedded applications. Experiments on the CelebA dataset show that Slim-CNN achieve an accuracy of 91.24% with 25x fewer parameters compared to MCNN-AUX and 100x fewer parameters when compared to DTML. This reduces the memory storage requirement of Slim-CNN by at least 87%. Furthermore, we compare Slim Modules with other well-known micro-architectures, such as Inception modules, residual blocks, Shuffle-Unit, and Inverted Residual units, and show it outperforms them in performance and in memory size, making it suitable for face-related tasks in embedded applications.
机译:我们引入一个计算上有效的CNN微架构超薄模块设计的轻质深神经网络,超薄CNN,对面部属性的预测。苗条组件是组装在深度方向上可分离的卷积用逐点卷积,以产生计算上有效的模块构成。面部属性预测问题是因为在姿态,背景,照明和数据集的不平衡大的变化的挑战。我们堆叠多个超薄模块设计一个紧凑的CNN,仍然保持非常高的精度。此外,超薄CNN具有非常低的内存占用,这使得它适合于移动和嵌入式应用程序。在CelebA数据集显示,相对于DTML当修身CNN达到91.24%的准确度相比于MCNN-AUX 25X更少的参数和100X较少的参数实验。这减少了由至少87%修身CNN的存储器存储需求。此外,我们比较苗条模块与其他公知的微结构,如启模块,残余块,随机单位,和反相残余单元,并显示它优于它们在性能和内存的大小,使得它适合face-在嵌入式应用中的相关任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号