首页> 外文会议>Conference on Uncertainty in Artificial Intelligence >End-to-end training of deep probabilistic CCA on paired biomedical observations
【24h】

End-to-end training of deep probabilistic CCA on paired biomedical observations

机译:对成对生物医学观测的深层概率CCA的端到端培训

获取原文

摘要

Medical pathology images are visually evaluated by experts for disease diagnosis, but the connection between image features and the state of the cells in an image is typically unknown. To understand this relationship, we develop a multimodal modeling and inference framework that estimates shared latent structure of joint gene expression levels and medical image features. Our method is built around probabilistic canonical correlation analysis (PCCA), which is fit to image embeddings that are learned using convolutional neural networks and linear embeddings of paired gene expression data. We train the model end-to-end so that the PCCA and neural network parameters are estimated simultaneously. We demonstrate the utility of this method in constructing image features that are predictive of gene expression levels on simulated data and the Genotype-Tissue Expression data. We demonstrate that the latent variables are interpretable by disentangling the latent subspace through shared and modality-specific views.
机译:通过疾病诊断的专家视觉评估医疗病理学图像,但图像特征与图像中的单元的状态之间的连接通常是未知的。为了了解这种关系,我们开发了一种多模式建模和推断框架,估计联合基因表达水平和医学图像特征的共同潜在结构。我们的方法是围绕概率规范相关分析(PCCA)构建的,其适合使用卷积神经网络和配对基因表达数据的线性嵌入来学习的图像嵌入。我们训练模型端到端,以便同时估计PCCA和神经网络参数。我们证明了该方法在构建对模拟数据和基因型组织表达数据上预测基因表达水平的图像特征的实用性。我们证明潜在变量通过通过共享和模当的视图解开潜伏子空间来解释可解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号