首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Kinetic Analysis of Electrochemical Lactonization of Ketones Using Water As the Oxygen Atom Source
【24h】

Kinetic Analysis of Electrochemical Lactonization of Ketones Using Water As the Oxygen Atom Source

机译:用水作为氧原子源的酮电化学内氏术的动力学分析

获取原文

摘要

Lactones serve as key synthetic intermediates for the large-scale production of several important chemicals, such as polymers, pharmaceuticals, and scents. Current thermochemical methods for the formation of some lactones rely on molecular oxidants, which yield stoichiometric side products that result in a poor atom economy and impose safety hazards when in contact with organic substrates and solvents. Electrochemical synthesis can alleviate these concerns by exploiting an applied potential to enable the possibility of a clean and safe route for lactonization. In this study, we investigated the mechanism of electrochemical lactone formation from cyclic ketones. When using a platinum anode and cathode in acetonitrile with 10 M H_2O and 400 mM cyclohexanone, we found that non-Baeyer-Villiger products, δ-hexanolactone and γ-caprolactone, are formed with a total Faradaic efficiency of ~20%. Isotope labeling experiments support that water is the oxygen atom source for this reaction. In addition, electrochemical kinetic data suggest a 1st order dependence on water at low water concentrations (<2 M H_2O) and a 0th order dependence on the substrate, cyclohexanone. A Tafel slope of 139 mV/decade was measured at 400 mM cyclohexanone and 10 M H_2O, implying an initial electron transfer as the rate determining step. Literature proposed mechanisms for similar transformations suggest an outer sphere pathway. However, based on the collected electrochemical kinetic data, we propose the possibility that Pt reacts with water in an initial electron transfer that forms Pt-OH, which can subsequently react with the ketone substrate. A subsequent electron transfer forms a ring opened carboxylic acid cation that can reclose to form either of the observed five- or six-member ring lactone products.
机译:乳酰胺作为关键合成中间体,用于大规模生产几种重要的化学品,例如聚合物,药物和气味。目前用于形成一些内酯的热化学方法依赖于分子氧化剂,其产量化学计量侧产物导致原子经济不佳,并在与有机底物和溶剂接触时施加安全危害。电化学合成可以通过利用施加的潜力来缓解这些问题,以实现术语的清洁和安全的途径。在这项研究中,我们研究了来自环酮的电化学内酯形成的机理。当使用10M H_2O和400mM环己酮的乙腈中使用铂阳极和阴极时,我们发现非Baeyer-Villiger产品,δ-己烷酰胺酮和γ-己内酯,形成为〜20%的总法达效率。同位素标记实验支持,水是该反应的氧原子源。此外,电化学动力学数据表明,在低水浓度(<2M H_2O)下的水对水的第一顺序依赖性,并在底物上依赖于乙基己酮。在400mM环己酮和10M H_2O下测量139 mV /十多数的Tafel斜率,暗示初始电子转移作为速率确定步骤。用于类似转化的文献提出的机制建议了外部球形途径。然而,基于收集的电化学动力学数据,我们提出了Pt在形成Pt-OH的初始电子转移中与水反应的可能性,其随后可以与酮底物反应。随后的电子转移形成环形开口的羧酸阳离子,其可以重新旋转以形成观察到的五个或六个成员环内酯产物中的任一种。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号