首页> 外文会议>IAF Materials and Structures Symposium;International Astronautical Congress >Design of Additively Manufactured Lightweight Structural Components using Topology Optimization
【24h】

Design of Additively Manufactured Lightweight Structural Components using Topology Optimization

机译:使用拓扑优化设计加瘦性的轻质结构部件

获取原文

摘要

Topology optimization is a powerful tool capable of generating component designs that offer significant mass reductions over existing concepts. Although applicable to a wide range of manufacturing processes, topology optimization is particularly well-suited to exploit the geometric freedom provided by additive manufacturing (AM) and is thus considered to be a key technology enabler to reach unprecedented levels of structural efficiency in components for space systems. Despite the ideal pairing of topology optimization and AM, these technologies must be fully integrated in order to harness their full potential, such as maximal reductions in mass, design cycle time, production (and post-production) time, and cost. This talk will discuss a newly developed topology optimization framework that is tailorable to the specific capabilities of a manufacturing process. In particular, we will focus on the wire-fed process of Electron Beam Freeform Fabrication (EBF3) being studied at NASA Langley Research Center; EBF3 is particularly suitable for large scale components due to its high deposition rate. The topology optimization framework is based on projection methods and allows incorporation of manufacturing considerations directly into the design exploration, including minimum feature size and separation constraints, process-dependent material parameters, and geometric lineography. The design problem is posed formally as a requirements-driven optimization problem and solved using large scale gradient-based optimizers. A key feature of the approach is the mathematical consistency of the sensitivity analysis, allowing it to be readily extended to other wire-fed metal AM methods, provided that the geometric resolution and resultant material properties have been characterized. The resulting integrated design-manufacture framework is demonstrated on multiple case studies and is shown to successfully design lightweight structural components that are directly manufacturable.
机译:拓扑优化是一种功能强大的工具,能够生成组件设计,可在现有概念上提供显着的质量。虽然适用于广泛的制造过程,但拓扑优化特别适合利用加性制造(AM)提供的几何自由度,因此被认为是一个关键技术推动者,以达到空间部件部件的前所未有的结构效率水平。系统。尽管拓扑优化和AM具有理想的配对,但必须完全集成这些技术,以便利用它们的全部潜力,例如质量,设计周期时间,生产(和生产后)时间和成本的最大减少。此谈话将讨论新开发的拓扑优化框架,可为制造过程的特定功能定制。特别是,我们将专注于在NASA Langley研究中心研究的电子束自由形状制造(EBF3)的电线馈电过程; EBF3由于其高沉积速率而特别适用于大规模组件。拓扑优化框架基于投影方法,并允许将制造考虑纳入设计探索,包括最小特征大小和分离约束,处理依赖性材料参数和几何相位造影。设计问题正式地作为要求驱动的优化问题,并使用大规模的基于梯度的优化器来解决。该方法的一个关键特征是敏感性分析的数学一致性,允许其容易地扩展到其他电线馈电金属AM方法,只要表征了几何分辨率和所得到的材料特性。由此产生的集成设计制造框架进行了多种案例研究,并显示成成功设计直接制造的轻质结构部件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号