首页> 外文会议>Advances in Material amp;amp;amp; Processing Technologies Conference >Strain Rate and Temperature Effects on the Strength and Dissipative Mechanisms in Al-Cu_(50)Zr_(50) Interface Model: Molecular Dynamics Simulation Study
【24h】

Strain Rate and Temperature Effects on the Strength and Dissipative Mechanisms in Al-Cu_(50)Zr_(50) Interface Model: Molecular Dynamics Simulation Study

机译:Al-Cu_(50)ZR_(50)界面模型中的应变速率和温度效应对Al-Cu_(50)Zr_(50)型界面模型的强度和耗散机制:分子动力学模拟研究

获取原文

摘要

Molecular dynamics (MD) simulations are performed to characterize the metal (Al)-metallic glass (Cu_(50)Zr_(50)) interface strength and dissipative mechanisms at different strain rates and temperatures under mode-I loading. EAM (Embedded Atom Method) potential is used for modelling the interaction between Al-Cu-Zr atoms. Simulation box size of 100 A (x) x 110 A (y) x 50 A (z) is used for investigation the properties of the model interface. The model is first constructed with the bottom layer Al of 50 A and the top layer of Cu_(50)Zr_(50) of 55 A in height along y-direction. Thereafter, Cu_(50)Zr_(50) metallic glass is obtained by rapid cooling at a cooling rate of 8.5 x 10~(11)K s~(-1) using NPT ensemble. The interface is deformed at strain rates of 10~9 s~(-1) and 10~(10) s~(-1) and at temperatures of 150 K and 250 K using NVT ensemble (timestep=0.002 ps). It is found that the strength of interface increases with increase of strain rate and decreases with increase in temperature. Centro symmetry parameter (CSP) is used for analysis of dissipative mechanisms operative during the deformation of the interface. It is found that the dominant deformation mechanism at the interface is by Shockley partial dislocation motion.
机译:进行分子动力学(MD)模拟以表征金属(Al)金属玻璃(Cu_(50)Zr_(50))界面强度和耗散机制在不同应变速率和模式下的温度下。 EAM(嵌入原子方法)电位用于建模Al-Cu-Zr原子之间的相互作用。仿真框大小为100a(x)x 110a(y)x 50a(z)用于调查模型接口的属性。该模型首先用沿Y方向高度为55a的50a的底层A1和55a的顶层Al。此后,通过使用NPT集合体以8.5×10〜(11)ks〜(1)的冷却速率快速冷却,获得Cu_(50)Zr_(50)金属玻璃。界面以10〜9 s〜(-1)和10〜(10)S〜(-1)的应变率变形,使用NVT合奏的温度为150 k和250 k(SIMESTEP = 0.002 PS)。发现界面强度随着应变率的增加而增加,随着温度的增加而降低。 Centro对称参数(CSP)用于分析界面变形过程中的耗散机制。发现界面处的主导变形机制是通过震撼部分位错运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号