首页> 外文期刊>Materials & design >Molecular dynamics based cohesive zone modeling of Al (metal)-Cu50Zr50 (metallic glass) interfacial mechanical behavior and investigation of dissipative mechanisms
【24h】

Molecular dynamics based cohesive zone modeling of Al (metal)-Cu50Zr50 (metallic glass) interfacial mechanical behavior and investigation of dissipative mechanisms

机译:Al(金属)-Cu50Zr50(金属玻璃)界面力学行为的分子动力学内聚区建模及耗散机理研究

获取原文
获取原文并翻译 | 示例
           

摘要

We performed classical molecular dynamics (MD) simulations to predict the strength of Al (metal)-Cu50Zr50 (metallic glass) model interface at a temperature of 300 K and strain rate of 10(10) s(-1) under mode-I and mode-II loading conditions based on the cohesive zone model (CZM). EAM (Embedded Atom Method) potential is used for modeling the interaction between Al-Cu-Zr atoms. It is observed that the interface strength is higher than pure Al, and ruptures in the Al region by necking under mode-I loading. Atoms of Al stick to the Cu50Zr50 metallic glass after fracture due to strong bonding between Al-Cu and Al-Zr atoms than Al-Al atoms as inferred from density functional theory based study. The observed dominant dissipative mechanisms at the interface are partial dislocations and stair rod dislocations under both the loading conditions. The strength of the interface decreases in the presence of a crack as expected. The traction-separation response of the interface shows a maximum stress followed by a decrease in stress indicating the complete separation of the interface. The present study gives a significant insight into metal-metallic glass interface deformation behavior and underlying mechanism. The results can be input into continuum length-scale micromechanical models that determine overall material properties. (C) 2016 Elsevier Ltd. All rights reserved.
机译:我们进行了经典的分子动力学(MD)模拟,以预测在模式I和条件下300 K的温度和10(10)s(-1)的应变速率下Al(金属)-Cu50Zr50(金属玻璃)模型界面的强度。基于内聚区模型(CZM)的II型载荷条件。 EAM(嵌入式原子方法)电势用于模拟Al-Cu-Zr原子之间的相互作用。观察到界面强度高于纯Al,并且在I型载荷下通过颈缩在Al区域破裂。从基于密度泛函理论的研究中推断,由于Al-Cu和Al-Zr原子之间的键合比Al-Al原子强,Al原子断裂后会粘附在Cu50Zr50金属玻璃上。在两种载荷条件下,在界面处观察到的主要耗散机制为部分位错和楼梯杆位错。如预期的那样,在存在裂纹的情况下界面的强度降低。界面的牵引-分离响应显示出最大应力,随后应力降低,表明界面已完全分离。本研究对金属-金属玻璃界面的变形行为及其潜在机理提供了重要的见识。结果可以输入到确定整体材料特性的连续长度尺度微机械模型中。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Materials & design》 |2016年第5期|41-50|共10页
  • 作者单位

    Natl Inst Technol Rourkela, Computat Mat Engn Grp, Dept Met & Mat Engn, Rourkela 769008, India;

    Natl Inst Technol Rourkela, Computat Mat Engn Grp, Dept Met & Mat Engn, Rourkela 769008, India;

    Natl Inst Technol Rourkela, Computat Mat Engn Grp, Dept Met & Mat Engn, Rourkela 769008, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Molecular dynamics; Interface; Mode-I; Mode-II; Dislocations;

    机译:分子动力学;界面;模式-I;模式-II;位错;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号