首页> 外文会议>ASME International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems >INTERCONNECT FATIGUE FAILURE PARAMETER ISOLATION FOR POWER DEVICE RELIABILITY PREDICTION
【24h】

INTERCONNECT FATIGUE FAILURE PARAMETER ISOLATION FOR POWER DEVICE RELIABILITY PREDICTION

机译:电力设备可靠性预测的互连疲劳失效参数隔离

获取原文

摘要

Flip chip (FC) packaging techniques in modern power electronics have enabled increased power density in module performance, but mechanical stresses induced by thermal expansion during inherent operating conditions in the power devices and packages create a need for understanding thermomechanical fatigue mechanisms that lead to reliability concerns. Moreover, in actual use, these mechanical stresses impact the reliable lifetime alongside thermal factors (such as diffusion and microstructural transformation) and other process history effects. This amalgam of damage inducing phenomena make development of a concise association between damage, fatigue, and stress factors difficult to determine. For reliability demonstration under fatigue loading, accelerated life testing (ALT), such as Thermal Cycling (TC), are commonly used in industry; however, long duration and expensive equipment required for TC limit its utility, especially when considering the high cost of wide-bandgap devices and modules, and the limitation of high temperature (>150°C) testing standards. As a result, alternative test methodologies are needed to provide faster, cheaper, and design integrable reliability determination. In this work, an accelerated test methodology is introduced and designed to simulate these mechanical stresses at isothermal conditions, which is demonstrated using test chips that are analogous to power devices. By stressing these devices in a controlled environment, mechanical stresses become de-coupled from the design and temperature, such that useful lifetimes can be predictable. Mechanical shear stress was cyclically applied directly to device-relevant, flip-chip solder interconnects while monitoring cycles-to-failure (CTF). Also, Finite Element Analysis (FEA) is used to extract various damage metrics of different solder materials (including PbSn37/63, SAC305 and Nano-silver) in both thermal operation and the introduced alternative mechanical testing conditions. In doing so, test protocol translations to common qualification tests (or use condition thermal profiles) can be determined and are validated using the mechanical shear stress testing method. Plastic work density and maximum shear were calculated in the critical solder interconnects for different isothermal mechanical testing temperatures (22°C, 75°C, 100°C and 125°C) and the results are compared with the simulation results of different TC test conditions. This reliability determination with failure parameter isolation allows for improved integration with FEA modeling for a priori reliability prediction during the design process.
机译:倒装芯片(FC)在现代电力电子包装技术已经能够增加在模块的性能的功率密度,但在在功率器件和封装固有的操作条件引起的热膨胀的机械应力创建需要理解的热机械疲劳的机制,导致可靠性问题。此外,在实际使用中,这些机械应力影响可靠寿命旁边的热因素(如扩散和微观结构的转变)和其他工艺历史影响。的损伤诱导的现象这汞合金使损伤,疲劳之间的简明关联发展,及应激因素难以确定。对于疲劳载荷下可靠性验证,加速寿命试验(ALT),诸如热循环(TC),在工业中通常使用的;然而,对于需要TC长的持续时间和昂贵的设备限制其效用,考虑的宽禁带的设备和模块的成本高特别是当,和高温(> 150℃)测试标准的限制。其结果是,需要替代的测试方法,以提供更快,更便宜,并设计积可靠性判定。在这项工作中,加速的测试方法被引入并设计成在等温条件下,这是使用类似于功率器件测试芯片证明模拟这些机械应力。通过强调在受控环境中这些装置中,机械应力成为去耦合从设计和温度,使得有用寿命可以是可预测的。机械剪切应力循环直接施加到装置相关的,倒装芯片焊料互连,同时监控周期到故障(CTF)。此外,有限元分析(FEA)是用于提取不同的焊接材料(包括PbSn37 / 63,和SAC305纳米银)在这两个热操作和所引入的替代的机械测试条件的各种损害的指标。在这样做时,测试的协议转换到共同的鉴定测试(或使用条件热分布)可以被确定,并使用机械剪切应力测试方法进行了验证。塑性功密度和最大剪切是在临界焊料互连为不同的等温机械测试的温度(22°C,75°C,100°C和125°C)和结果计算用的不同TC测试条件的模拟结果进行比较。该可靠度确定与故障隔离参数允许与FEA建模改进的集成在设计过程中的先验可靠性预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号