首页> 外文期刊>Journal of Electronic Packaging >Interconnect Fatigue Failure Parameter Isolation for Power Device Reliability Prediction in Alternative Accelerated Mechanical Cycling Test
【24h】

Interconnect Fatigue Failure Parameter Isolation for Power Device Reliability Prediction in Alternative Accelerated Mechanical Cycling Test

机译:互连加速疲劳故障参数隔离,用于替代加速机械循环测试中的电力设备可靠性预测

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, a rapid and low-cost accelerated reliability test methodology which was designed to simulate mechanical stresses induced in flip-chip bonded devices during the thermal cycling reliability test under isothermal conditions, is introduced and demonstrated using power device analogous test chips. By stressing these devices in a controlled environment, mechanical stresses become decoupled from the design and temperature, such that useful lifetimes can be predictable. Mechanical shear stress was cyclically applied directly to device relevant, flip-chip solder interconnects while monitoring for failure. Herein, finite element analysis (FEA) is used to extract various damage metrics of different solder materials, including PbSn37/63, SAC305, and nanosilver, in both thermal operation and the introduced alternative mechanical testing conditions. Plastic work density and strain are calculated in the critical solder interconnects as factors that indicate the amount of the damage accumulation per cycle during the mechanical cycling, thermal cycling, and power cycling tests. The number of cycles to failure for each test was calculated using the fatigue life model developed by Darveaux for eutectic PbSn solder, while for SAC305 Syed's method was used, and for nanosilver, the Knoerr et al. equations are applied. The effects of environmental temperature and shearing force frequency were studied for the mechanical cycling reliability test, where a modified Norris-Landzberg equation for mechanical cycling tests was explored using the simulation results. Finally, comparing the mechanical cycling with the equivalent thermal cycling and power cycling demonstrated a significant reduction in required test duration to achieve a reliability estimation.
机译:在这项工作中,介绍了一种快速且低成本的加速可靠性测试方法,该方法旨在模拟等温条件下热循环可靠性测试期间倒装芯片键合器件中产生的机械应力,并使用功率器件类似的测试芯片进行了演示。通过在受控环境中对这些器件施加压力,机械应力会与设计和温度脱钩,从而可以预测使用寿命。机械剪切应力被周期性地直接施加到与器件相关的倒装芯片焊料互连上,同时监视故障。本文中,在热操作和引入的替代机械测试条件下,都使用有限元分析(FEA)提取了不同焊料材料(包括PbSn37 / 63,SAC305和纳米银)的各种损伤指标。在关键的焊料互连中计算塑性工作密度和应变,作为表明在机械循环,热循环和功率循环测试期间每个循环的损伤累积量的因素。使用Darveaux为共晶PbSn焊料开发的疲劳寿命模型,计算出每个测试的失败循环数,而对于SAC305 Syed方法,对于纳米银,则使用Knoerr等人的方法。应用方程式。在机械循环可靠性试验中研究了环境温度和剪切力频率的影响,并利用模拟结果探索了改进的Norris-Landzberg方程用于机械循环试验。最后,将机械循环与等效的热循环和功率循环进行比较,结果表明,实现可靠性评估所需的测试时间显着减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号