【24h】

The Quest for Productivity Steering

机译:寻求生产力转向

获取原文

摘要

Over the past forty years, steering a horizontal well has evolved from geometric to structural to facies type and now productivity steering. This paper is aimed to summarize the evolution of wellbore steering and the impact of logging-while-drilling on well and reservoir performance. The quest for productivity drilling began in the late 1980s with the first generation of logging-while- drilling (LWD) technology that provided directional and formation-evaluation measurements and basic data insurance in vertical and deviated wells. The primary applications were stratigraphic and structural correlation and rudimentary formation evaluation. A shift in LWD technology in the 1990s increased the focus on exploitation of smaller, tighter, and harder-to-reach reservoirs. This second phase saw the introduction of azimuthal measurements, borehole images, instrumented steerable motors, and forward- modeling programs for well placement through geosteering. Well architectures became more challenging as well construction evolved from geometrical designs to wells steered by geological information. In the 21st century, geosteering entered its third phase; structural steering with deep- reading LWD resistivity measurements and high-resolution imaging. This allowed operators to re- position in real-time horizontal and high-angle wellbore trajectories in anticipation of structural changes ahead of the bit. Two recent developments since 2010 have taken geosteering to the next phase of productivity steering. The first one is reservoir mapping while drilling. It uses continuous bed boundary logs from deep azimuthal electromagnetic measurements. The second one is fluid mapping while drilling. It incorporates discrete/station measurements of reservoir rock and fluid properties from formation testing while drilling along with advanced mud gas logs. These developments have made it possible to estimate the productivity index (PI) of openhole section, in near real time, during reservoir drilling process. The productivity index while drilling estimate can therefore be used for drilling decisions as well as completion decisions and to evaluate the effect of trajectory undulations on well productivity while drilling. Real Time Productivity Steering (RTPS) is hence no longer a myth but a reality now.
机译:在过去的四十年中,转向横向井已经从几何到结构上发展到结构形式,现在的生产力转向。本文旨在总结井口转向的演变和井井钻井井和储层性能的影响。探索生产力钻探开始于20世纪80年代后期,第一代钻孔(LWD)技术提供了方向性和形成评估测量和垂直和偏离井的基本数据保险。主要应用是地层和结构相关和基本的形成评价。 20世纪90年代LWD技术的转变增加了对较小,更紧密和更难以到达水库的焦点。该第二阶段介绍了引进方位角测量,钻孔图像,仪器可操纵的电机,以及通过地蹄设备的井放置的前向建模程序。由于施工从几何设计从地质信息转向的井中发展,井建筑变得更具挑战性。在21世纪,地球化进入其第三阶段;深度读取LWD电阻率测量和高分辨率成像的结构转向。这使得运营商能够在实时水平和高角度井筒轨迹中重新定位,以期预期该比特领先的结构变化。自2010年以来的两个发展已经对生产力转向的下一阶段进行了地统治。第一个是钻井时的水库映射。它采用来自深度方位角电磁测量的连续床边界日志。第二个是钻孔时的流体测绘。它包括储层岩石和流体性能的离散/站测量,以及钻孔以及先进的泥浆气体原木。这些发展使得在储层过程中,可以在近实时估计露孔部分的生产率指数(PI)。因此,钻井估计的生产率指数可以用于钻探决策以及完成决策,并在钻井时评估轨迹起伏的轨迹起伏的效果。实时生产力转向(RTPS)因此不再是一个神话,但现在是现实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号