首页> 外文会议>International Conference on Soft Computing Models in Industrial Applications >A Performance Study of Concentrating Photovoltaic Modules Using Neural Networks: An Application with CO2RBFN
【24h】

A Performance Study of Concentrating Photovoltaic Modules Using Neural Networks: An Application with CO2RBFN

机译:使用神经网络浓缩光伏模块的性能研究:CO2RBFN的应用

获取原文

摘要

Concentrating Photovoltaic (CPV) technology attempts to optimize the efficiency of solar energy production systems and models for determining the exact module performance are needed. In this paper, a CPV module is studied by means of atmospheric conditions obtained using an automatic test and measuring system. CO2RBFN, a cooperative-competitive algorithm for the design of radial basis neural networks, is adapted and applied to these data obtaining a model with a good level of accuracy on test data, improving the results obtained by other methods considered in the experimental comparison. These initial results are promising and the obtained model could be used to work out the maximum power at the CPV reporting conditions and to analyze the performance of the module under any conditions and at any moment.
机译:集中光伏(CPV)技术试图优化太阳能生产系统的效率和用于确定确切模块性能的模型。本文通过使用自动测试和测量系统获得的大气条件研究了CPV模块。 CO2RBFN是一种用于设计径向基神经网络的协作竞争算法,适用于这些数据,这些数据获得了在测试数据上具有良好精度的模型,提高了在实验比较中考虑的其他方法获得的结果。这些初始结果是有前途的,所获得的模型可用于在CPV报告条件下计算最大功率,并在任何条件下分析模块的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号