首页> 外文会议>Conference on AIAA guidance, navigation, and control >Robust Aeroservoelastic Design with Structural and Trim Parameter Uncertainties
【24h】

Robust Aeroservoelastic Design with Structural and Trim Parameter Uncertainties

机译:具有结构和修剪参数不确定性的强大的气动弹性设计

获取原文

摘要

A unified robust structural, trim relationship and controller design methodology is presented for a MIMO aeroservoelastic system. It contains two stages in an iterative procedure: (1) robust structure and trim relationship optimization, and (2) robust controller design based on the optimal structure. The objective of the unified robust aeroservoelastic design is to obtain a minimum structure weight, under constraints on stability and performance specifications, and with structural and trim parameter uncertainties. Robustness is reflected in the fact that the weight variance is restricted to a small range and all the constraints are met when the design variables are uncertain. A genetic algorithm and sensitivity data were used in this open loop robust design stage. For the robust controller design, the well-known linear fractional transformation is used to interconnect uncertainty models for the structure and trim parameters with the other nominal aeroservoelastic model. Finally, the μ synthesis is applied to design a robust controller, which provides robust stability and instaneous closed-loop performance, under reasonable stress limitations. A flight vehicle with four control surfaces was tested to validate this methodology. After robust aeroservoelastic design, the aircraft is 3.62% heavier than the structure optimized by nominal method without consideration of uncertainty. However all the constraints are satisfied by the robust optimization, when the design variables are perturbed in a 5% uncertainty range. Hence, the structure is more robust to resist design variable uncertainties. The robust controller provided simultaneous high roll-rate performance and reduced the wing-root stress by 58.3% , when compared with the performance and stress of the open-loop aeroelastic system.
机译:介绍了MIMO Aeroservoelastic系统的统一稳健的结构,装饰关系和控制器设计方法。它包含两个迭代程序中的两个阶段:(1)鲁棒结构和修剪关系优化,(2)基于最佳结构的强大控制器设计。统一稳健的气动弹性设计的目的是在稳定性和性能规格的约束下获得最小的结构重量,以及结构和修剪参数不确定性。体重差异限制在小范围内的事实中,鲁棒性反映在设计变量不确定时满足所有约束。在该开环鲁棒设计阶段使用遗传算法和灵敏度数据。对于鲁棒控制器设计,众所周知的线性分数变换用于与其他标称气动弹性模型相互连接的结构和修剪参数的不确定性模型。最后,应用μ合成以设计鲁棒控制器,其在合理的应力限制下提供鲁棒的稳定性和透明闭环性能。测试有四个控制表面的飞行车辆以验证该方法。经过稳健的气动弹性设计,飞机比在不考虑不确定性的情况下比标称方法优化的结构重362%。然而,当设计变量在5%的不确定性范围内扰乱时,所有约束都满足了鲁棒优化。因此,该结构更稳健地抵抗设计可变的不确定性。与开环空气弹性系统的性能和应力相比,稳健的控制器提供了同时高卷速率性能并减少了58.3%的翼根应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号