首页> 外文会议>AIAA guidance, navigation, and control conference >Robust Aeroservoelastic Design with Structural and Trim Parameter Uncertainties
【24h】

Robust Aeroservoelastic Design with Structural and Trim Parameter Uncertainties

机译:具有结构和修剪参数不确定性的鲁棒航空气弹设计

获取原文

摘要

A unified robust structural, trim relationship and controller design methodology is presented for a MIMO aeroservoelastic system. It contains two stages in an iterative procedure: (1) robust structure and trim relationship optimization, and (2) robust controller design based on the optimal structure. The objective of the unified robust aeroservoelastic design is to obtain a minimum structure weight, under constraints on stability and performance specifications, and with structural and trim parameter uncertainties. Robustness is reflected in the fact that the weight variance is restricted to a small range and all the constraints are met when the design variables are uncertain. A genetic algorithm and sensitivity data were used in this open loop robust design stage. For the robust controller design, the well-known linear fractional transformation is used to interconnect uncertainty models for the structure and trim parameters with the other nominal aeroservoelastic model. Finally, the μ synthesis is applied to design a robust controller, which provides robust stability and instaneous closed-loop performance, under reasonable stress limitations. A flight vehicle with four control surfaces was tested to validate this methodology. After robust aeroservoelastic design, the aircraft is 3.62% heavier than the structure optimized by nominal method without consideration of uncertainty. However all the constraints are satisfied by the robust optimization, when the design variables are perturbed in a 5% uncertainty range. Hence, the structure is more robust to resist design variable uncertainties. The robust controller provided simultaneous high roll-rate performance and reduced the wing-root stress by 58.3% , when compared with the performance and stress of the open-loop aeroelastic system.
机译:提出了一种用于MIMO航空弹性系统的统一鲁棒结构,调整关系和控制器设计方法。它包含一个迭代过程的两个阶段:(1)稳健的结构和微调关系优化,以及(2)基于最佳结构的稳健的控制器设计。统一的鲁棒性航空弹性设计的目的是在稳定性和性能规格的约束下,并在结构和内饰参数不确定的情况下,获得最小的结构重量。稳健性体现在以下事实:当设计变量不确定时,将权重变化限制在很小的范围内,并满足所有约束条件。在此开环鲁棒设计阶段,使用了遗传算法和灵敏度数据。对于鲁棒的控制器设计,众所周知的线性分数变换用于将结构和修整参数的不确定性模型与其他名义气动弹性模型互连。最后,μ综合用于设计鲁棒控制器,该控制器在合理的应力限制下提供鲁棒的稳定性和即时的闭环性能。测试了具有四个控制面的飞行器以验证该方法。经过坚固的航空弹性设计,飞机比不考虑不确定性的标称方法优化的结构重3.62%。但是,当设计变量在5%的不确定性范围内波动时,所有约束都可以通过鲁棒的优化得到满足。因此,该结构对于抵抗设计变量的不确定性更为鲁棒。与开环气动弹性系统的性能和应力相比,坚固的控制器可同时提供高侧倾率性能,并将翼根应力降低58.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号