首页> 外文会议>ATCE 2012 >Examining the Effect of Cemented Natural Fractures on Hydraulic Fracture Propagation in Hydrostone Block Experiments
【24h】

Examining the Effect of Cemented Natural Fractures on Hydraulic Fracture Propagation in Hydrostone Block Experiments

机译:检查水泥天然骨折对水上块实验中水力骨折繁殖的影响

获取原文

摘要

Micro seismic data and coring studies suggest that hydraulic fractures interact heavily with natural fractures creating complex fracture networks in naturally fractured reservoirs such as the Barnett shale, the Eagle Ford shale, and the Marcellus shale. However, since direct observations of subsurface hydraulic fracture geometries are incomplete or nonexistent, we look to properly scaled experimental research and computer modeling based on realistic assumptions to help us understand fracture intersection geometries. Most experimental analysis of this problem has focused on natural fractures with frictional interfaces. However, core observations from the Barnett and other shale plays suggest that natural fractures are largely cemented. To examine hydraulic fracture interactions with cemented natural fractures, we performed 9 hydraulic fracturing experiments in gypsum cement blocks that contained embedded planar glass, sandstone, and plaster discontinuities which acted as proxies for cemented natural fractures. There were three main fracture intersection geometries observed in our experimental program. 1) A hydraulic fracture is diverted into a different propagation path(s) by a natural fracture. 2) A taller hydraulic fracture bypasses a shorter natural fracture by propagating around it via height growth while also separating the weakly bonded interface between the natural fracture and the host rock. 3) A hydraulic fracture bypasses a natural fracture and also diverts down it to form separate fractures. The three main factors that seemed to have the strongest influence on fracture intersection geometry were the angle of intersection, the ratio of hydraulic fracture height to natural fracture height, and the differential stress. Simply put, the most significant finding of this research is that fracture intersection geometries are complex. Our results show that bypass, separation of weakly bonded interfaces, diversion, and mixed mode propagation are likely in hydraulic fracture intersections with cemented natural fractures. The impact of this finding is that we need fully 3D computer models capable of accounting for bypass and mixed mode I-III fracture propagation in order to realistically simulate subsurface hydraulic fracture geometries.
机译:微地震数据和取芯研究表明,液压骨折与自然骨折的自然骨折,在天然骨折的储层中产生复杂的骨折网络,如Barnett Shale,Eagle Ford页岩和Marcellus Shale。然而,由于地下液压骨折几何形状的直接观察不完全或不存在,因此我们期望基于现实假设的正确规模的实验研究和计算机建模,以帮助我们理解骨折交叉路口几何形状。对此问题的大多数实验分析都集中在具有摩擦界面的自然骨折。然而,巴内特和其他页岩戏剧的核心观察表明,自然骨折在很大程度上巩固。为了检查与粘合的自然骨折的液压骨折相互作用,我们在石膏水泥块中进行了9个液压压裂实验,其包含嵌入式平面玻璃,砂岩和石膏不连续性,其作为胶合天然骨折的代理。在我们的实验计划中观察了三个主要的骨折交叉路口几何形状。 1)通过自然骨折将液压断裂转移到不同的传播路径中。 2)较高的液压骨折通过通过高度生长传播而绕过较短的自然裂缝,同时还在天然骨折和主体岩石之间分离弱粘合的界面。 3)液压骨折绕过自然骨折,并将其转移以形成单独的骨折。似乎对骨折交叉几何形成最强影响的三个主要因素是交叉角,液压骨折高度与自然骨折高度的比率,以及差分应力。简单地说,这项研究的最重要发现是骨折交叉路口几何形状是复杂的。我们的结果表明,旁路,弱粘合界面的分离,转移和混合模式传播可能是液压骨折与粘合的自然骨折的液压骨折交叉口。这一发现的影响是,我们需要完全3D计算机模型,能够占用旁路和混合模式I-III裂缝传播,以便实际地模拟地下液压断裂几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号