首页> 外文学位 >Analysis of hydraulic fracture propagation in fractured reservoirs: An improved model for the interaction between induced and natural fractures.
【24h】

Analysis of hydraulic fracture propagation in fractured reservoirs: An improved model for the interaction between induced and natural fractures.

机译:裂缝性储层中水力裂缝的传播分析:诱导裂缝和自然裂缝之间相互作用的改进模型。

获取原文
获取原文并翻译 | 示例

摘要

Large volumes of natural gas exist in tight fissured reservoirs. Hydraulic fracturing is one of the main stimulating techniques to enhance recovery from these fractured reservoirs. Although hydraulic fracturing has been used for decades for the stimulation of tight gas reservoirs, a thorough understanding of the interaction between induced hydraulic fractures and natural fractures is still lacking. Recent examples of hydraulic fracture diagnostic data suggest complex, multi-stranded hydraulic fracture geometry is a common occurrence. The interaction between pre-existing natural fractures and the advancing hydraulic fracture is a key condition leading to complex fracture patterns. Large populations of natural fractures that exist in formations such as the Barnett shale are sealed by precipitated cements which could be quartz, calcite, etc. Even though there is no porosity in the sealed fractures, they may still serve as weak paths for fracture initiation and/or for diverting the path of the growing hydraulic fractures. Performing hydraulic fracture design calculations under these complex conditions requires modeling of fracture intersections and tracking fluid fronts in the network of reactivated fissures. In this dissertation, the effect of the cohesiveness of the sealed natural fractures and the intact rock toughness in hydraulic fracturing are studied. Accordingly, the role of the pre-existing fracture geometry is also investigated. The results provide some explanations for significant differences in hydraulic fracturing in naturally fractured reservoirs from non-fractured reservoirs. For the purpose of this research, an extended finite element method (XFEM) code is developed to simulate fracture propagation, initiation and intersection. The motivation behind applying XFEM are the desire to avoid remeshing in each step of the fracture propagation, being able to consider arbitrary varying geometry of natural fractures and the insensitivity of fracture propagation to mesh geometry. New modifications are introduced into XFEM to improve stress intensity factor calculations, including fracture intersection criteria into the model and improving accuracy of the solution in near crack tip regions.;The presented coupled fluid flow-fracture mechanics simulations extend available modeling efforts and provide a unified framework for evaluating fracture design parameters and their consequences. Results demonstrate that fracture pattern complexity is strongly controlled by the magnitude of in situ stress anisotropy, the rock toughness, the natural fracture cement strength, and the approach angle of the hydraulic fracture to the natural fracture. Previous studies (mostly based on frictional fault stability analysis) have concentrated on predicting the onset of natural fracture failure. However, the use of fracture mechanics and XFEM makes it possible to evaluate the progression of fracture growth over time as fluid is diverted into the natural fractures.;Analysis shows that the growing hydraulic fracture may exert enough tensile and/or shear stresses on cemented natural fractures that they may be opened or slip in advance of hydraulic fracture tip arrival, while under some conditions, natural fractures will be unaffected by the hydraulic fracture. A threshold is defined for the fracture energy of cements where, for cases below this threshold, hydraulic fractures divert into the natural fractures. The value of this threshold is calculated for different fracture set orientations. Finally, detailed pressure profile and aperture distributions at the intersection between fracture segments show the potential for difficulty in proppant transport under complex fracture propagation conditions.;Whether a hydraulic fracture crosses or is arrested by a pre-existing natural fracture is controlled by shear strength and potential slippage at the fracture intersections, as well as potential debonding of sealed cracks in the near-tip region of a propagating hydraulic fracture. We introduce a new more general criterion for fracture propagation at the intersections. We present a complex hydraulic fracture pattern propagation model ix based on the Extended Finite Element Method as a design tool that can be used to optimize treatment parameters under complex propagation conditions.
机译:致密裂隙储层中存在大量天然气。水力压裂是提高这些裂缝性油藏采收率的主要增产技术之一。尽管水力压裂已被用于增产致密气藏数十年,但仍缺乏对诱发水力压裂与天然压裂之间相互作用的透彻了解。水力压裂诊断数据的最新例子表明,复杂的多股水力压裂几何形状是普遍现象。先前存在的天然裂缝与前进的水力裂缝之间的相互作用是导致复杂裂缝模式的关键条件。诸如Barnett页岩等地层中存在的大量天然裂缝被沉淀的胶结剂密封,这些胶结剂可能是石英,方解石等。即使密封的裂缝中没有孔隙,它们仍可能是裂缝萌生和破裂的弱路。 /或用于转移水力压裂裂缝的路径。在这些复杂条件下进行水力压裂设计计算需要对裂缝相交进行建模,并在再活化裂缝网络中跟踪流体锋面。本文研究了封闭天然裂缝的黏聚力和水力压裂的完整岩石韧性的影响。因此,还研究了预先存在的断裂几何形状的作用。结果为天然裂缝性储层与非裂缝性储层的水力压裂显着差异提供了一些解释。出于本研究的目的,开发了扩展有限元方法(XFEM)代码以模拟裂缝的扩展,起爆和相交。应用XFEM的动机是希望避免在裂缝扩展的每个步骤中重新划分网格,能够考虑自然裂缝的任意变化的几何形状以及裂缝扩展对网格几何形状的不敏感性。 XFEM中引入了新的改进,以改进应力强度因子的计算,包括将裂缝相交标准纳入模型并提高裂纹尖端区域附近解决方案的准确性。提出的耦合流体流动-断裂力学模拟扩展了可用的建模工作并提供了统一的方法评估裂缝设计参数及其后果的框架。结果表明,裂缝模式的复杂性受原地应力各向异性的大小,岩石韧性,天然裂缝胶结强度以及水力裂缝与天然裂缝的接近角的强烈控制。先前的研究(主要基于摩擦故障稳定性分析)集中在预测自然断裂失效的发生上。然而,随着流体被转移到天然裂缝中,裂缝力学和XFEM的使用使得可以评估裂缝随时间的发展。;分析表明,不断增长的水力裂缝可能对胶结天然裂缝施加足够的拉伸和/或剪切应力可能在水力压裂尖端到达之前就将其打开或打滑的裂缝,而在某些情况下,自然裂缝将不受水力压裂影响。为水泥的断裂能定义了一个阈值,对于低于该阈值的情况,水力裂缝会转变为自然裂缝。针对不同的裂缝设定方向计算该阈值的值。最后,裂缝段之间相交处的详细压力分布和孔径分布显示了在复杂的裂缝传播条件下支撑剂运输困难的潜在可能性;水力裂缝是否穿过或被预先存在的天然裂缝阻止由剪切强度控制和裂缝相交处的潜在滑移,以及正在传播的水力裂缝的近端区域中密封裂缝的潜在剥离。我们为交叉口处的裂缝扩展引入了新的更通用的准则。我们提出了一种基于扩展有限元方法的复杂水力压裂模式传播模型ix,作为一种设计工具,可用于优化复杂传播条件下的处理参数。

著录项

  • 作者

    Dahi Taleghani, Arash.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 石油、天然气工业;
  • 关键词

  • 入库时间 2022-08-17 11:37:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号