首页> 外文期刊>International journal of geomechanics >Studies of Hydraulic Fracture-Propagation Behavior in Presence of Natural Fractures: Fully Coupled Fractured-Reservoir Modeling in Poroelastic Environments
【24h】

Studies of Hydraulic Fracture-Propagation Behavior in Presence of Natural Fractures: Fully Coupled Fractured-Reservoir Modeling in Poroelastic Environments

机译:在天然裂缝存在下水力裂缝扩展行为的研究:多孔弹性环境中的全耦合裂缝储层模型

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, the propagation behavior of an induced hydraulic fracture in the presence of a natural fracture is described. A complex meshing and finite-element technique are employed to couple a poroelastic formation, a hydraulic fracture, and an arbitrarily oriented natural fracture. Possibilities of fracture deviation, arrest, and crossing for various angles of approach are investigated under different scenarios of in situ stress contrast, rock strength, and natural fracture geometry (length). Results of this study show that orientation of natural fracture and its length have a profound effect on induced hydraulic fracture propagation. It has been observed that, in most cases, the induced hydraulic fracture crosses short natural fractures (<10 m). As the induced hydraulic fracture approaches the natural fracture, fluid leak off increases, and consequently, the width of the induced fracture at the wellbore (fracture mouth) decreases. Once the induced hydraulic fracture breaks out of the natural fracture, the fluid leak off decreases, thus increasing the width of the induced fracture. It has been also observed that propagation of induced fracture is blocked or diverted by the presence of a long natural fracture (> 10 m). With an increase in the injection rate, however, the induced fracture is likely to cross a long natural fracture (> 10 m). The new understandings derived from the fully coupled poroelastic model have many beneficial applications, including design and optimization of hydraulic fracture treatments in naturally fractured reservoirs (tight gas and shale gas reservoirs) and permeability enhancement by fluid-induced shear displacement of fracture surfaces [enhanced geothermal systems (EGS)].
机译:在本文中,描述了在自然裂缝存在下诱发水力裂缝的传播行为。采用复杂的网格划分和有限元技术来耦合孔隙弹性地层,水力裂缝和任意定向的自然裂缝。在原位应力对比,岩石强度和自然裂缝几何形状(长度)的不同情况下,研究了不同进场角度的裂缝偏离,停滞和交叉的可能性。这项研究的结果表明,天然裂缝的方向及其长度对诱导的水力裂缝扩展有深远的影响。已经观察到,在大多数情况下,诱发的水力压裂穿过短的自然裂缝(<10 m)。随着诱导的水力压裂接近自然裂缝,流体泄漏增加,因此,在井眼(压裂口)处的诱导压裂宽度减小。一旦诱发的水力压裂从天然裂缝中爆发出来,流体的渗漏就会减少,从而增加了诱发压裂的宽度。还已经观察到,由于存在长的自然裂缝(> 10 m),导致的裂缝的传播被阻止或转移。但是,随着注入速率的增加,诱发的裂缝可能会跨越较长的自然裂缝(> 10 m)。从完全耦合的孔隙弹性模型获得的新认识具有许多有益的应用,包括设计和优化天然裂缝储层(致密气和页岩气储层)的水力压裂处理,以及通过流体诱导的裂缝表面剪切位移提高渗透率[强化地热系统(EGS)]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号