首页> 外文会议>Symposium on advances in spectroscopy and imaging of surfaces and nanostructures >Quantum rods and dots-based structures devices: Low cost aqueous synthesis and bandgap engineering for solar hydrogen and solar cells applications
【24h】

Quantum rods and dots-based structures devices: Low cost aqueous synthesis and bandgap engineering for solar hydrogen and solar cells applications

机译:量子棒和基于点的结构和装置:太阳能氢气和太阳能电池应用的低成本水性合成和带隙工程

获取原文

摘要

If one considers the largest and geographically balanced free natural resource available on Earth, that is seawater, and that more sunlight energy is striking our blue planet in one hour than all of our annual energy consumption, the direct solar-to-hydrogen conversion by photo-oxidation of seawater is a very straightforward and attractive solution for the production of hydrogen, as it is clean, sustainable and renewable. It offers an alternative solution to fossil-fuel-based energy sources and explains the tremendous interest in renewable, sustainable energy sources and materials for energy conversion. However, the materials requirements for water splitting and thus the direct solar-to-hydrogen generation are drastic. The materials must be stable in water, which rules out many classes of materials. They must also be stable under illumination against photocorrosion and their bandgap must be small enough to absorb visible light, but large enough not to "dissolve" once illuminated. Finally, their band edges must be positioned below and above the redox potential of hydrogen and oxygen, respectively. Bandgap energy and band-edge positions, as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edges can be controlled by the electronegativity of the dopants and solution pH, as well as by new concepts such as quantum confinement effects and the fabrication of novel hetero-nanostructures. Fulfilling those requirements while keeping the cost of the materials low is a tremendously difficult challenge, which explains why solar hydrogen generation is still in its infancy. Novel approach and latest development combining low cost aqueous synthesis techniques, vertically oriented metal oxide nanorods and quantum confinement effects probed by x-ray spectroscopies from synchrotron radiation is presented leading to stable and cost-effective visible-light-active semiconductors for seawater splitting, the holy grail of photocatalysis.
机译:如果一个人认为地球上最大和地理上平衡的自然资源,那就是海水,而且阳光能量更多地在一小时内比我们的年度能耗醒目,比我们的每年的每年都能击中,直接的太阳能到氢转换照片 - 海水的氧化是一种非常简单而有吸引力的氢气,因为它是干净的,可持续和可再生的。它为化石燃料的能源提供了另一种解决方案,并解释了对可再生能源,可持续的能源和能源转换材料的巨大兴趣。然而,水分裂材料的要求,因此是直接的太阳能 - 氢生成是剧烈的。材料必须在水中稳定,这规定了许多类材料。它们在照明的照明中也必须保持稳定,并且它们的带隙必须足够小以吸收可见光,但是足够大的不到“溶解”一旦照亮。最后,它们的带状边缘必须分别位于氢气和氧的氧化还原电位之下。带隙能量和带边位置,以及半导体的整体带结构在光电化学和光催化应用中具有至关重要的重要性。带边的能量位置可以通过掺杂剂和溶液pH的电负性来控制,以及诸如量子限制效应的新概念和新的杂纳米结构的制造。履行这些要求,同时保持材料的成本低是一个极度困难的挑战,这解释了为什么太阳能氢生成仍处于初期。结合低成本水性合成技术,垂直取向金属氧化物纳米棒和来自同步辐射辐射探测的垂直取向金属氧化物纳米棒和量子限制效果的新方法和最新的发展导致海水分裂稳定且经济高效的可见光活性半导体,光催化的圣杯。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号