...
首页> 外文期刊>Energies >Next Generation Solar Cells Based on Graded Bandgap Device Structures Utilising Rod-Type Nano-Materials
【24h】

Next Generation Solar Cells Based on Graded Bandgap Device Structures Utilising Rod-Type Nano-Materials

机译:基于利用杆型纳米材料的梯度带隙器件结构的下一代太阳能电池

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Current solar cells under research and development utilise mainly one absorber layer limiting the photon harvesting capabilities. In order to develop next generation solar cells, research should move towards effective photon harvesting methods utilising low-cost solar energy materials. This will lead to reduce the $W−1 figure for direct solar energy conversion to electrical energy. In this work, a graded bandgap solar cell has been designed to absorb all photons from the UV, visible and IR regions. In addition, impurity PV effect and impact ionisation have been incorporated to enhance charge carrier creation within the same device. This new design has been experimentally tested using the most researched MOCVD grown GaAs/AlGaAs system, in order to confirm its validity. Devices with high Voc ~ 1175 mV and the highest possible FF ~ (0.85–0.87) have been produced, increasing the conversion efficiency to ~20% within only two growth runs. These devices were also experimentally tested for the existence of impurity PV effect and impact ionisation. The devices are PV active in complete darkness producing over 800 mV, Voc indicating the harvesting of IR radiation from the surroundings through impurity PV effect. The quantum efficiency measurements show over 140% signal confirming the contribution to PV action from impact ionisation. Since the concept is successfully proven, the low-cost and scalable electrodeposited semiconducting layers are used to produce graded bandgap solar cell structures. The utilisation of nano- and micro-rod type materials in graded bandgap devices are also presented and discussed in this paper. Preliminary work on glass/FTO-ZnS-CdS-CdTe/Au graded bandgap devices show 10%–12% efficient devices indicating extremely high Jsc values ~48 mA·cm−2, showing the high potential of these devices in achieving higher efficiencies. The detailed results on these low-cost and novel graded bandgap devices are presented in a separate publication.
机译:当前正在研究和开发的太阳能电池主要利用一个吸收层来限制光子的收集能力。为了开发下一代太阳能电池,研究应朝着利用低成本太阳能材料的有效光子收集方法发展。这将导致直接将太阳能转换为电能的$ W -1 数字降低。在这项工作中,已设计出一种梯度的带隙太阳能电池,以吸收来自紫外线,可见光和红外线区域的所有光子。此外,杂质PV效应和碰撞电离已被并入,以增强同一器件内电荷载流子的产生。为了确定其有效性,已使用研究最多的MOCVD生长的GaAs / AlGaAs系统对该新设计进行了实验测试。已经生产出具有高Voc〜1175 mV和最高FF〜(0.85–0.87)的器件,仅在两次生长过程中,转换效率就提高了约20%。这些设备还通过实验测试了杂质PV效应和碰撞电离的存在。该设备在完全黑暗的条件下具有PV活性,产生800 mV以上的电压,V oc 表示通过杂质PV效应从周围环境中收集了IR辐射。量子效率测量显示超过140%的信号证实了碰撞电离对PV作用的贡献。由于该概念已被成功证明,因此低成本且可扩展的电沉积半导体层可用于生产渐变带隙太阳能电池结构。本文还介绍并讨论了纳米和微棒型材料在梯度带隙器件中的应用。玻璃/ FTO / n-ZnS / n-CdS / n-CdTe / Au级带隙器件的初步工作显示出效率为10%–12%的器件,表明J sc 值极高,约为48 mA·cm < sup> -2 ,表明这些设备在实现更高效率方面具有很高的潜力。这些低成本和新型分级带隙器件的详细结果在另一份出版物中提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号