首页> 外文学位 >Dye- and quantum dot-sensitized solar cells based on nanostructured wide-bandgap semiconductors via an integrated experimental and modeling study.
【24h】

Dye- and quantum dot-sensitized solar cells based on nanostructured wide-bandgap semiconductors via an integrated experimental and modeling study.

机译:通过综合实验和模型研究,基于纳米结构宽带隙半导体的染料和量子点敏化太阳能电池。

获取原文
获取原文并翻译 | 示例

摘要

Dye-sensitized solar cells (DSSCs) and quantum dot-sensitized solar cells (QDSSCs) are two promising alternative, cost-effective concepts for solar-to-electric energy conversion that have been offered to challenge conventional Si solar cells over the past decade. The configuration of a DSSC or a QDSSC consists of sintered TiO2 nanoparticle films, ruthenium-based dyes or quantum dots (QDs) (i.e., sensitizers), and electrolytes. Upon the absorption of photons, the dyes or QDs generate excitons (i.e., electron-hole pairs). Subsequently, the electrons inject into the TiO2 photoanode to generate photocurrent; scavenged by a redox couple, holes transport to the cathode. The overall power conversion efficiency (PCE) of a DSSC or QDSSC is dictated by the light harvest efficiency, quantum yield for charge injection, and charge collection efficiency at the electrodes. The goal of our research is to understand the fundamental physics and performance of DSSCs and QDSSCs with improved PCE at the low cost based on rational engineering of TiO2 nanostructures, sensitizers, and electrodes through an integrated experimental and modeling study. In this presentation, I will discuss three aspects that I have accomplished over the last several years.;(1) Effects of surface treatment and structural modification of photoanode on the performance of DSSCs. First, our research indicates that the surface treatment with both TiCl4 and oxygen plasma yields the most efficient dye-sensitized TiO2-nanoparticle solar cells. A maximum PCE is achieved with a 21 microm thick TiO2 film; the PCE further increases to 8.35% after TiCl4 and O 2 plasma treatments, compared to the untreated TiO2 ( PCE = 3.86%). Second, we used a layer of TiO2 nanoparticle film coated on the FTO glass, and a bilayer of TiO2nanoparticle/freestanding TiO2 nanotube film deposited on the FTO glass as photoanodes. The J∼V parameter analysis acquired by equivalent circuit model simulation reveals that nanotubular structures are advantageous and impart better charge transport in nanotubes. However, the photocurrent generation is reduced due to the small surface area, which in turn results in low dye loading. Third, we fabricate ZnO and TiO2 nanoflowers by the chemical bath deposition (CBD) method. The PCEs of DSSCs crafted with ZnO and TiO 2 nanoflowers are low comparing to those with TiO2 nanoparticles.;(2) The use of earth abundant, environmentally friendly quaternary Copper Zinc Tin Sulfide (CZTS) as a low-cost alternative to noble metal Pt as the counter electrode (CE). With a simple wet chemistry synthesis of CZTS and a viable spin-coating fabrication of CE, the resulting CZTS film after selenization exhibits an impressive electrocatalytic performance as CEs to promote the regeneration of iodide from triiodide in electrolyte, yielding an impressive PCE of 7.37%, remarkably comparable to that with the Pt CE ( PCE = 7.04%). The use of CZTS as CE may expand the possibilities for developing low-cost and scalable DSSCs, thereby dispensing with the need for expensive and rare Pt.;(3) Simulation of the light harvesting ability of TiO 2 nanotube solar cells coated with CdSe and PbSe QDs and the charge injection at the interfaces of TiO2 substrate and quantum dots. We find that for short nanotubes, there is a diffractive photonic effect where the absorption is maximized for the lattice pitch close to the wavelength of light being absorbed. The ab initio simulation results reveal appreciable overlaps of the wave-functions in the QDs and the TiO 2 substrate, which render the electron transfer on a time scale shorter than the electron-hole recombination time in the QDs.
机译:染料敏化太阳能电池(DSSC)和量子点敏化太阳能电池(QDSSC)是两个有前途的,具有成本效益的太阳能到电能转换的概念,在过去的十年中已经提出这些挑战来挑战常规的Si太阳能电池。 DSSC或QDSSC的结构由烧结的TiO2纳米颗粒薄膜,钌基染料或量子点(QD)(即敏化剂)和电解质组成。吸收光子后,染料或量子点会产生激子(即电子-空穴对)。随后,电子注入TiO2光电阳极以产生光电流。通过氧化还原对清除,空穴传输到阴极。 DSSC或QDSSC的总功率转换效率(PCE)由光收集效率,电荷注入的量子产率和电极处的电荷收集效率决定。我们的研究目标是通过对TiO2纳米结构,敏化剂和电极的合理设计,通过综合的实验和建模研究,以低成本了解具有改进的PCE的DSSC和QDSSC的基本物理和性能。在本演讲中,我将讨论我在过去几年中已完成的三个方面。(1)表面处理和光电阳极的结构改性对DSSC性能的影响。首先,我们的研究表明,用TiCl4和氧等离子体进行表面处理可产生最有效的染料敏化TiO2纳米粒子太阳能电池。厚度为21微米的TiO2膜可实现最大的PCE。与未处理的TiO2(PCE = 3.86%)相比,在TiCl4和O 2等离子体处理后,PCE进一步增加到8.35%。其次,我们在FTO玻璃上使用了一层TiO2纳米颗粒膜,并在FTO玻璃上沉积了一层TiO2纳米颗粒/独立式TiO2纳米管膜作为光阳极。通过等效电路模型仿真获得的J〜V参数分析表明,纳米管结构是有利的,并且在纳米管中具有更好的电荷传输。然而,由于较小的表面积而减少了光电流的产生,这进而导致低的染料负载。第三,我们通过化学浴沉积(CBD)方法制造了ZnO和TiO2纳米花。与用TiO2纳米粒子制成的DSSC相比,用ZnO和TiO 2纳米花制成的DSSC的PCE较低。;(2)使用地球丰富,环保的季铵硫化锌铜(CZTS)作为贵金属Pt的低成本替代品作为对电极(CE)。通过简单的湿法化学合成CZTS和可行的CE旋涂工艺,硒化后所得的CZTS膜表现出令人印象深刻的电催化性能,因为CEs促进了电解质中三碘化物的碘化物再生,产生了令人印象深刻的7.37%PCE,与Pt CE相当(PCE = 7.04%)。使用CZTS作为CE可以扩展开发低成本和可扩展DSSC的可能性,从而免除了对昂贵和稀有Pt的需求。(3)模拟涂覆CdSe和TiO2的TiO 2纳米管太阳能电池的光收集能力PbSe量子点和TiO2衬底与量子点的界面处的电荷注入。我们发现,对于短纳米管,存在衍射光子效应,其中对于接近于被吸收光波长的晶格间距,吸收最大化。从头开始的仿真结果显示了量子点和TiO 2衬底中波函数的明显重叠,这使得电子传递的时间尺度比量子点中的电子-空穴复合时间短。

著录项

  • 作者

    Xin, Xukai.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Alternative Energy.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号