首页> 外文学位 >Spintronics and Quantum Information Processing in Wide-Bandgap Semiconductors.
【24h】

Spintronics and Quantum Information Processing in Wide-Bandgap Semiconductors.

机译:宽带隙半导体中的自旋电子学和量子信息处理。

获取原文
获取原文并翻译 | 示例

摘要

Spin is a quantum-mechanical angular momentum intrinsic to many particles, including electrons, neutrons, and protons. Just as the charge of an electron has been exploited widely for modern technological gain, the spin of an electron may find future use in a number of advanced information technologies pursued by researchers within the fields of spintronics and quantum information. However, the future success of spin-based technologies relies heavily on identifying materials systems where spins can be easily manipulated with a high degree of quantum control, while remaining relatively robust to outside sources of quantum decoherence that tend to irreversibly alter the quantum state of the spins in an uncontrollable way. Towards these ends, we explore the physics of electronic spins in wide-bandgap semiconductors, which are semiconductors with bandgap energies roughly 2.0 eV or larger. First, we study the spins of spatially-delocalized conduction band electrons in gallium nitride, to determine whether they can be polarized electronically without the use of magnetic fields or magnetic materials. We use optical techniques to show that, despite the rather weak spin-orbit coupling expected to exist in gallium nitride, a current-induced spin polarization can still be observed in electronic Hall bar devices fabricated from bulk n-type epilayers of this material. We then turn our attention to highly-localized electronic spins that are bound to point defects within wide-bandgap semiconductors. Past studies in diamond have shown that a point defect known as the nitrogen-vacancy center possesses an electronic spin state that can be used as an individually-addressable quantum bit even at room temperature. However, no other defect systems with analogous properties were known to exist. We develop a set of screening criteria that can be used in conjunction with computational simulations to systematically identify defects similar to the diamond nitrogen-vacancy center, but in other semiconductors that can be grown and microfabricated more easily than diamond. We identify several promising defects in a variety of semiconductors, focusing in particular on vacancy-related defects in silicon carbide. As a result of these predictions, we engage in several optical and magnetic resonance studies of the 4H polytype of silicon carbide. We succeed in identifying six new species of point defect that can be used as spin qubits in analogy to the diamond nitrogen-vacancy center, with two of these defects exhibiting room temperature operation.
机译:自旋是许多粒子(包括电子,中子和质子)固有的量子力学角动量。正如电子的电荷已被广泛利用以获取现代技术收益一样,电子的自旋可能会在自旋电子学和量子信息领域的研究人员所追求的许多先进信息技术中找到未来的用途。但是,基于自旋的技术的未来成功在很大程度上取决于识别可以通过高度量子控制轻松控制自旋的材料系统,同时保持对外部趋于不可逆地改变其量子态的量子退相干源的相对鲁棒性。以无法控制的方式旋转。为此,我们探索了宽带隙半导体中电子自旋的物理原理,宽带隙半导体是带隙能量大约为2.0 eV或更大的半导体。首先,我们研究氮化镓中空间离域的导带电子的自旋,以确定它们是否可以在不使用磁场或磁性材料的情况下被电子极化。我们使用光学技术表明,尽管预计氮化镓中会存在相当弱的自旋轨道耦合,但仍可以在由这种材料的体n型外延层制成的电子霍尔棒器件中观察到电流感应的自旋极化。然后,我们将注意力转向高度局部化的电子自旋,该电子自旋必然会指出宽带隙半导体中的缺陷。过去对钻石的研究表明,被称为氮空位中心的点缺陷具有电子自旋态,即使在室温下也可以用作可单独寻址的量子位。但是,尚不存在其他具有类似特性的缺陷系统。我们开发了一套筛选标准,可以与计算仿真结合使用,以系统地识别与金刚石氮空位中心类似的缺陷,但在其他比金刚石更容易生长和微加工的半导体中。我们确定了各种半导体中的几种有前途的缺陷,特别是碳化硅中与空位相关的缺陷。这些预测的结果是,我们参与了4H碳化硅多型体的光学和磁共振研究。我们成功地确定了六种新的点缺陷,这些点缺陷可以类似于金刚石氮空位中心用作自旋量子位,其中两个缺陷表现出室温运行。

著录项

  • 作者

    Koehl, William Franklin.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Physics General.;Engineering Materials Science.;Physics Quantum.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号