首页> 外文会议>Frontiers of Characterization and Metrology for Nanoelectronics >Characterization of Strain Induced by PECVD Silicon Nitride Films in Transistor Channels
【24h】

Characterization of Strain Induced by PECVD Silicon Nitride Films in Transistor Channels

机译:PECVD氮化硅膜在晶体管通道中诱导的菌株的表征

获取原文

摘要

In order to reach high levels of transistor performance, it is desirable to increase electrical conductivity of the device. An efficient way to enhance carrier mobility in the conduction channel is to generate strain in the structure using process-induced stress. To achieve that, stress engineering of the contact etch stop layer (CESL), an amorphous hydrogenated silicon nitride film deposited by plasma enhanced chemical vapour deposition on top of the metal oxide semiconductor assembly, is widely used since it is a low-cost technique. Indeed, this film possesses an intrinsic stress that can be set from tensile (σ=1.6GPa) to compressive (σ=-3.0GPa) depending on deposition conditions. From an electrical point of view, strain induced in the silicon channel can lead to an increase of carrier mobility as high as 8-10% which in turn increases I_(on)/I_(off) and decreases switching time of the transistor. Usually, strain induced in the channel is very low (0.1 - 0.3%), making quantitative measurements challenging. Moreover, stress transmission mechanisms are not fully understood at the nano-metre scale. To evaluate stress transmission in the silicon channel, we used dark-field electron holography characterization technique operating on both the Titan and Tecnai F20 transmission electron microscopes. Strain maps with nanometre spatial resolution, high sensitivity (Δε ≈ 10~(-3)%) and large field of view (400 - 500nm~2) have been obtained on CESL strained devices. In order to understand stress transfer mechanisms, we have analysed structures with varying spacing between patterns. The experimental results are compared to those obtained by 2-D finite elements analysis simulation.
机译:为了达到高水平的晶体管性能,希望增加装置的电导率。增强导通通道中载流子迁移率的有效方法是使用过程引起的应力产生结构的应变。为此,通过氧化物半导体组件顶部的等离子体增强的化学气相沉积沉积的接触蚀刻停止层(CES1)的应力工程,广泛使用,因为它是低成本技术,因此广泛使用沉积的等离子体增强的化学气相沉积。实际上,该薄膜具有根据沉积条件从拉伸(σ= 1.6gPa)从拉伸(σ= -3.0gPa)的内在应力。从电视角度来看,在硅通道中感应的应变可以导致载流子迁移率的增加,高达8-10%,这又增加了I_(ON)/ I_(OFF)并降低晶体管的切换时间。通常,在通道中诱导的菌株非常低(0.1-0.3%),使定量测量具有具有挑战性的。此外,应力传动机构在纳米尺度上不完全理解。为了评估硅通道中的应力传递,我们使用了在泰坦和Tecnai F20透射电子显微镜上操作的暗场电子全全息特征技术。在CESL应变器件上获得了具有纳米空间分辨率,高灵敏度(Δε≈10〜(-3)%)和大视场的应变映射,并且在CESL应变器件上获得了大的视场(400-500nm〜2)。为了理解压力转移机制,我们已经分析了图案之间具有不同间距的结构。将实验结果与由2-D有限元分析模拟获得的实验结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号