首页> 外文会议>Frontiers of Characterization and Metrology for Nanoelectronics >Stress-induced Effects Caused by 3D IC TSV Packaging in Advanced Semiconductor Device Performance
【24h】

Stress-induced Effects Caused by 3D IC TSV Packaging in Advanced Semiconductor Device Performance

机译:由3D IC TSV包装在高级半导体器件性能中引起的应力诱导的效果

获取原文

摘要

Potential challenges with managing mechanical stress and the consequent effects on device performance for advanced 3D through-silicon-via (TSV) based technologies are outlined. The paper addresses the growing need in a simulation-based design verification flow capable to analyze a design of 3D IC stacks and to determine across-die out-of-spec variations in device electrical characteristics caused by the layout and through-silicon-via (TSV)/package-induced mechanical stress. The limited characterization/measurement capabilities for 3D IC stacks and a strict "good die" requirement make this type of analysis critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation to assess the mechanical stress across the device layers in silicon chips stacked and packaged with the 3D TSV technology is proposed. A calibration technique based on fitting to measured stress components and electrical characteristics of the test-chip devices is presented. A strategy for generation of a simulation feeding data and respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. For model validation, high-resolution strain measurements in Si channels of the test-chip devices are needed. At the nanoscale, the transmission electron microscopy (TEM) is the only technique available for sub-10nm strain measurements so far.
机译:概述了管理机械应力的潜在挑战以及基于先进的3D通过硅通孔(TSV)技术的设备性能的影响。本文解决了在基于仿真的设计验证流程中的需求,能够分析3D IC堆叠的设计,并确定由布局和硅通孔引起的装置电气特性的模糊超出规范变化( TSV)/包装诱导的机械应力。 3D IC堆栈的有限表征/测量功能以及严格的“好模”要求使这种类型的分析成为实现可接受的功能和参数产量和可靠性的关键。本文侧重于开发可制造设计(DFM)类型的方法,用于在基于3D TSV的模具,堆叠和包装的一系列设计期间管理机械应力。提出了一系列基于物理的紧凑型号,用于多尺度模拟,以评估堆叠和封装在用3D TSV技术堆叠和包装的硅芯片上的机械应力。提出了一种基于拟合测量应力分量和测试芯片装置的电特性的校准技术。提出了一种用于生成模拟馈送数据和各自的材料表征方法的策略,其目标是为晶片级和包装级结构的多尺度材料参数生成数据库。对于模型验证,需要在测试芯片装置的SI通道中进行高分辨率应变测量。在纳米级,透射电子显微镜(TEM)是迄今为止副10个应变测量可用的唯一技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号