首页> 外文会议>NATO/SPS international technical meeting on air pollution modeling and its appliation >7.2 Computational Scheme Accounting for Heterogeneous Surface Emissions in CTMs
【24h】

7.2 Computational Scheme Accounting for Heterogeneous Surface Emissions in CTMs

机译:7.2计算方案占CTMS中异质表面排放的计算

获取原文
获取外文期刊封面目录资料

摘要

Chemistry transport models (CTMs) have been widely used for urban air-quality forecast over the last 10 years but rarely for human exposure studies or health impact assessment (HIA). Exposure models require information on pollutant concentration at the neighborhood scale (sub-kilometer resolution). High resolution modelling applications may look appealing but their high computational cost makes them inappropriate for this purpose. Spatio-temporal analysis of monitor data is used in most cases in exposure studies (Georgopoulos et al., 2005). On the other hand, traditional HIA methods use area-aggregated monitor data. Not taking into account the spatial variability of pollutant concentrations has been shown to lead to significant bias in health risk estimates in HIA methods (Smith, 1997). It becomes clear that CTMs should adapt to the needs of such studies and provide information on small scale concentration variability. We applied an emission scheme to the CHIMERE CTM that allows to extract information on the variability of pollutant concentrations at sub-grid scale. The application is based on the split of grid-averaged emission into separate contributions of emitting activities co-existing over the same grid-cell area (e.g. traffic transportation, residential emissions, etc.). Different concentrations are calculated for each emission scenario allowing the evaluation of concentration variability between source-specific areas inside grid-cells. The advantage of the application is that modelled concentrations are directly associated to human-activities during the day and are therefore, easily adapted to human exposure models.
机译:化学运输模型(CTMS)已广泛用于过去10年的城市空气质量预测,但很少用于人类暴露研究或健康影响评估(HIA)。曝光模型需要关于邻域尺度(亚千米分辨率)的污染物浓度的信息。高分辨率建模应用可能看起来有吸引力,但它们的高计算成本使它们不适合此目的。在大多数情况下使用监测数据的时空分析在暴露研究中(Georgopoulos等,2005)。另一方面,传统的HIA方法使用区域聚合的监视器数据。未考虑污染物浓度的空间可变性已被证明是在HIA方法中导致健康风险估算中的显着偏见(Smith,1997)。明确的是,CTMS应适应这些研究的需要,并提供有关小规模集中变异性的信息。我们将排放方案应用于Chimere CTM,允许提取关于亚网级污染物浓度变异性的信息。该申请基于电网平均排放的分离成分成相同网格区域共存的发射活动的单独贡献(例如交通运输,住宅排放等)。为每个发射场景计算不同浓度,允许评估网格细胞内源特异性区域之间的浓度变异性。应用的优点是建模浓度与白天的人类活动直接相关,因此,容易适应人类曝光模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号