首页> 外文会议>NATO advanced research workshop on security and reliability of damaged structures and defective materials >FROM MACRO TO MESO AND NANO MATERIAL FAILURE.QUANTIZED COHESIVE MODEL FOR FRACTAL CRACKS
【24h】

FROM MACRO TO MESO AND NANO MATERIAL FAILURE.QUANTIZED COHESIVE MODEL FOR FRACTAL CRACKS

机译:从宏观到中间物质和纳米材料衰竭。分形裂缝的凝聚模型

获取原文
获取外文期刊封面目录资料

摘要

A discretization procedure for the cohesive model of a fractal crack requires that all pertinent entities describing the influence of the cohesive stress that restrains opening of the crack, such as effective stress intensity factor, the modulus of cohesion, extent of the end zone and the opening displacement within the high-strain region adjacent to the crack tip are re-visited and replaced by certain averages over a finite length referred to as either "unit step growth" or "fracture quantum". Thus, two novel aspects of the model enter the theory: (1) degree of fractality related to the roughness of the newly created surface, and (2) discrete nature of the propagating crack. Both variables are shown to increase the equilibrium length of the cohesive zone. At the point of incipient fracture this length becomes the characteristic material length parameter L_c. Novel properties of the present model provide a better insight and an effective tool to explain multiscale nature of fracture process and the associated transitions from nano- to micro- and macro-levels of material response to deformation and fracture. These multiscale features of any real material appear to be inherent defense mechanisms provided by nature. As the degree of fractality increases, the characteristic material length is shown to rapidly grow to the levels around three orders of magnitude higher than those predicted for the classic case. Such effect is helpful in explaining an unusual size-sensitivity of fracture testing in materials with cementitious bonding such as concrete and certain types of ceramics, where fractal cracks are commonly observed. In the limit of vanishing quantum fracture and/or reduced degree of fractality the quantized cohesive model of a fractal crack, as presented here, reduces to the well-known classic models of Dugdale-Barenblatt or to the LEFM or the QFM fracture theories.
机译:分形裂缝的粘性模型的离散化程序要求描述抑制裂缝开口的内聚应力的影响的所有相关实体,例如有效的应力强度因子,内聚力模量,端区的程度和开口与裂纹尖端相邻的高应变区域内的位移被重新访问并通过有限长度被称为“单位步长生长”或“裂缝量子”的某些平均值替换。因此,模型的两种新颖方面进入了理论:(1)与新创建的表面的粗糙度相关的性的程度,(2)传播裂缝的离散性质。两个变量显示出增加粘性区域的平衡长度。在初始断裂点,该长度成为特征材料长度参数L_C。本模型的新颖性质提供了更好的洞察力和有效的工具,用于解释裂缝过程的多尺度性质以及从纳米至微型和宏观水平的相关转变对变形和裂缝的响应的相关转变。任何实际材料的这些多尺度特征似乎是自然提供的固有的防御机制。随着性的变性程度增加,特征材料长度被示出为快速生长到大约三个数量级的水平高于对经典案例的量级。这种效果有助于解释具有胶粘粘合的材料中裂缝试验的不寻常大小敏感性,例如混凝土和某些类型的陶瓷,其中通常观察到分形裂缝。在消失量子骨折和/或降低的变形度降低的分形裂纹的量化内聚模型,如本文所述,降低了Dugdale-Barenblatt的公知经典型号或右甲纤维或QFM骨折理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号