首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Meso-scale physical modeling of energetic degradation function in the nonlocal macro-meso-scale consistent damage model for quasi-brittle materials
【24h】

Meso-scale physical modeling of energetic degradation function in the nonlocal macro-meso-scale consistent damage model for quasi-brittle materials

机译:中脆材料非识别宏观型尺度一致损伤模型的高能量退化功能的中学规模物理建模

获取原文
获取原文并翻译 | 示例

摘要

The modeling of crack initiation and propagation is of vital importance in the design and safety evaluation of structural components and engineering structures. Great advances have been achieved in the crack simulation during the past decades. Although the phase-field theory and the newly proposed nonlocal macro-meso-scale consistent damage (NMMD) model can predict the crack initiation, propagation and load-deformation curves for quasi-brittle materials correctly, the energetic degradation function, which bridges the energy-based damage and the topologic damage and plays an important role in these models, is still more or less empirically determined. In the present paper, a physical interpretation and quantitative modeling of the energetic degradation function via the embedded meso-scale mechanism of damage in the NMMD model is proposed. For this purpose, the NMMD model is firstly outlined. In this model, the meso-scale damage is firstly defined based on the degradation of bonds of material point pairs according to the irreversible elongation. The macro-scale topologic damage is then evaluated by averaging the meso-scale damage in the influence domain. It is then inserted into the thermodynamically consistent framework of continuum damage mechanics via the energetic degradation function bridging the topologic damage and the energy-based damage. To physically determine the energetic degradation function, the Helmholtz free energy of the damaged and undamaged materials is evaluated from the meso-scale mechanism of damage In addition, it is theoretically proved that such determined energetic degradation function is invariant against the meso-scale parameters, including the radius of influence domain and the critical elongation quantity, and is weakly related to the strain state. Four numerical examples involving mode-I and mix-mode failures of isotropic quasi-brittle materials under static loading are studied to verify the NMMD model with the physically determined energetic degradation function. It is demonstrated that by the proposed approach there is no need to prescribe the initial crack and potential propagation path, the crack propagation can be captured automatically and the mesh size sensitivity is circumvented. Problems to be further studied are also discussed. (C) 2020 Elsevier B.V. All rights reserved.
机译:在结构部件和工程结构的设计和安全评估方面,裂纹启动和传播的建模至关重要。在过去几十年中,在裂缝模拟中取得了巨大进展。虽然相场理论和新提出的非局部宏观 - Meso-Scale(NMMD)模型可以正确地预测准脆性材料的裂纹启动,传播和负载变形曲线,其能量降解功能弥合了能量基于损坏和拓扑损坏,在这些模型中发挥着重要作用,仍然或多或少地经验确定。在本文中,提出了通过嵌入式中型损坏损坏机制的能量降解功能的物理解释和定量建模。为此目的,首先概述了NMMD模型。在该模型中,首先基于根据不可逆伸长率的材料点对键的劣化来定义中间尺度损坏。然后通过平均影响结构域中的中间尺度损伤来评估宏观级拓扑损伤。然后通过桥接拓扑损伤和基于能量的损伤的能量降解函数插入连续损伤力学的热力学一致的框架中。为了物理地确定能量降解功能,从中间尺度的损坏机制评估了损坏和未损坏的材料的亥姆霍兹自由能,理论上,理论上证明了这种确定的能量退化功能是不变的,对中间尺度参数不变,包括影响结构域和临界伸长量的半径,与应变状态弱。研究了静态加载下的各向同性准脆性材料模式-I和混合模式故障的四个数值例子,以验证NMMD模型,具有物理测定的能量降解功能。据证明,通过所提出的方法,不需要规定初始裂缝和潜在的传播路径,可以自动捕获裂缝传播,并且网格尺寸灵敏度被避免。还讨论了要进一步研究的问题。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号