【24h】

Applications of FE Multi-Scale Simulations in Microelectronics

机译:Fe多尺度模拟在微电子中的应用

获取原文

摘要

This paper discusses challenges for multi-scale Finite Element (FE) modeling in microelectronics. Its miniaturization and multi-scale nature is an enabler for in Healthcare and Well-being markets. Function integration and miniaturization enable microelectronic products having functionalities such as rollable display (Figure 1), wireless connectivity & GPS, beaming, illumination systems, body health sensor, DNA analyzer, and many many more. For multi-scale FE modeling, their added value could be in preventing reliability problems and enabling faster functionality integrations in microelectronics resulting in shorter time to market and lower cost. The challenge in the area of multi-scale modeling is to understand the products aim, functionality and the full processing towards the end product. Key for FE modeling in microelectronics is to combine this with modeling expertise and make the right modeling assumptions and simplifications efficiently. Applications of multi-scale modeling can already be found in areas where small geometries cannot be modeled within the total models geometry due to convergence and CPU limitations. Figure 2 shows an example of local IC interconnect structures that cannot be modeled efficiently in a total package model. More applications are found in developing Cu/LowK bond pad structures, IC passivation & interconnect reliability in SiPs (System in Packages), and board level solder reliability. Herein, the multi-scale modeling is applied because of limiting factors such as large size differences, convergence problems, and limited CPU available. We propose to apply available multi-scale methodologies from now on more aggressively for its enabling factors such as faster model development, higher simulation flexibility, and more efficient simulations. We have the chance to do so because of the innovative and initiative FE community, supported by the multi-scale approaches becoming available in commercial FE softwares. Next to this, modeling is proving to be a key tool for showing product performance, risks, etc. prior to the (expensive) physical prototyping and testing. Figure 3 shows an example of multi-scale modeling for fast results. It enables wire reliability simulation of one wire type (local model) for multiple locations in the package (global model). Secondly, it enables simulating multiple wire materials, types, etc. using boundary constraints from the global package simulation. We like to conclude that we see important challenges in gaining application knowledge of microelectronics products and convert this into making efficient and effective choices for applying multi-scale approaches with a focus on reducing modeling and simulation time.
机译:本文讨论了微电子中多尺度有限元(FE)建模的挑战。它的小型化和多尺度性质是医疗保健和幸福市场的推动者。功能集成和小型化使能微电子产品具有卷式显示器(图1),无线连接和GPS,光束,照明系统,身体健康传感器,DNA分析仪等功能。对于多尺度FE建模,其附加值可能是防止可靠性问题,并使微电子中的功能更快地集成导致市场较短到市场和更低的成本。多尺度建模领域的挑战是了解产品的目标,功能和全面处理到最终产品。 Microelectronics中的FE建模的关键是将其与建模专业知识相结合,并有效地制定正确的建模假设和简化。多尺度建模的应用已经可以在由于收敛和CPU限制由于收敛和CPU限制而无法在总模型几何形状中建模的区域中找到。图2示出了本地IC互连结构的示例,其无法在总包装模型中有效地建模。在SIPS(封装中的系统)中开发CU / Lowk键合焊盘结构,IC钝化和互连可靠性以及板级焊接可靠性的更多应用。这里,应用了多尺度建模,因为诸如大尺寸差异,收敛问题和可用的有限CPU的限制因素,因此应用了多尺度建模。我们建议从现在开始应用可用的多尺度方法,以更积极地实现其启用因素,例如更快的模型开发,更高的模拟灵活性和更高效的模拟。由于创新和倡议的FE社区,我们有机会这样做,通过多种方法在商业FE软件中获得多种方法。在此旁边,模拟证明是在(昂贵的)物理原型制作和测试之前显示产品性能,风险等的关键工具。图3显示了用于快速结果的多尺度建模的示例。它能够为包装(全局型号)中的多个位置进行电线可靠性仿真。其次,它可以使用来自全局包模拟的边界约束来模拟多线材,类型等。我们喜欢得出结论,在获得微电子产品的应用知识中,我们看到了重要挑战,并将其转换为实现多尺度方法的高效和有效选择,重点是降低建模和模拟时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号