首页> 外文会议>International Conference on Electronic Packaging Technology High Density Packaging >Failure analysis of Sn-3.5Ag solder joints for FCOB using 2-D FEA model
【24h】

Failure analysis of Sn-3.5Ag solder joints for FCOB using 2-D FEA model

机译:使用2-D FEA模型对FCOB的SN-3.5AG焊点的故障分析

获取原文

摘要

The test vehicle is the FCOB with the chip size of 4mm*4mm*0.52mm, 0.32mm pitch and an I/O array of 13*13. Different solder height and UBM height are considered. The analysis is performed by a 2-D plane strain finite element model using Ansys 10.0 software. The Sn-3.5Ag solders are examined for their reliability by accelerated thermal cycling test with temperatures ranging from −40°C to 125°C. Two different constitutive models namely state variable elastic-plastic-creep and viscoplastic analysis are used to simulate the machanical property of Sn-3.5Ag solder joints under temperature cycle. The life prediction is evaluated through the Darveaux energy model. The simulation results indicate that the outmost solder joint has the largest equivalent strain energy density. The equivalent inelastic (plastic+creep) strain energy density and viscoplastic strain energy density extracted from the elastic-plastic-creep and viscoplastic analysis results respectively, at the critical solder joint location, are used as a failure parameter for solder fatigue model employed. For the non-underfill FCOB assembly, the outermost solder joint has an inelastic strain energy density six~ten times higher than the inneer solder joint, for both the elastic-plastic-creep and viscoplastic analysis. While in underfilled FCOB assembly, the inelastic strain energy density at the outermost solder joint and inner solder joint are reduced by twenty times and two~three times, respectively, for both elastic-plastic-creep and viscoplastic analysis. The inelastic strain energy density decreases with the increase of solder height and UBM height. The introduction of underfill to the FCOB assembly couples and restricts the CTE mismatch between the silicon die and the FR4 board and increase the fatigue life.
机译:试验车是FCOB,芯片尺寸为4mm * 4mm * 0.52mm,0.32mm间距和13 * 13的I / O阵列。考虑不同的焊料高度和UBM高度。通过使用ANSYS 10.0软件通过二进制平面应变有限元模型进行分析。通过加速热循环试验检查SN-3.5AG焊料,温度从-40°C到125°C的温度。两个不同的本构模型即状态可变弹性塑料蠕变和粘胶塑料分析用于在温度循环下模拟Sn-3.5Ag焊点的机械性能。通过Darveaux能量模型评估寿命预测。仿真结果表明,最外面的焊点具有最大的等效应变能密度。在临界焊点位置分别在弹性塑料蠕变和粘液分析结果中提取的等效非弹性(塑料+蠕变)应变能密度和粘塑性应变能量密度用作所用焊料疲劳模型的失效参数。对于非欠填充FCOB组件,最外面的焊点的绝缘应变能量密度比纳入焊接接头高六〜十倍,用于弹性型蠕变和粘塑料分析。虽然在底部的FCOB组件中,最外面的焊点和内焊接接头处的无弹性应变能密度分别减少了弹性塑料蠕变和粘塑性分析的二十倍和两三倍。不弹性应变能量密度随着焊料高度和UBM高度的增加而降低。将底部填充到FCOB组件耦合的引入并限制硅模具和FR4板之间的CTE不匹配,并增加疲劳寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号