首页> 外文会议>2010 11th International Conference on Electronic Packaging Technology High Density Packaging >Failure analysis of Sn-3.5Ag solder joints for FCOB using 2-D FEA model
【24h】

Failure analysis of Sn-3.5Ag solder joints for FCOB using 2-D FEA model

机译:使用二维FEA模型分析FCOB的Sn-3.5Ag焊点的失效分析

获取原文

摘要

The test vehicle is the FCOB with the chip size of 4mm*4mm*0.52mm, 0.32mm pitch and an I/O array of 13*13. Different solder height and UBM height are considered. The analysis is performed by a 2-D plane strain finite element model using Ansys 10.0 software. The Sn-3.5Ag solders are examined for their reliability by accelerated thermal cycling test with temperatures ranging from −40°C to 125°C. Two different constitutive models namely state variable elastic-plastic-creep and viscoplastic analysis are used to simulate the machanical property of Sn-3.5Ag solder joints under temperature cycle. The life prediction is evaluated through the Darveaux energy model. The simulation results indicate that the outmost solder joint has the largest equivalent strain energy density. The equivalent inelastic (plastic+creep) strain energy density and viscoplastic strain energy density extracted from the elastic-plastic-creep and viscoplastic analysis results respectively, at the critical solder joint location, are used as a failure parameter for solder fatigue model employed. For the non-underfill FCOB assembly, the outermost solder joint has an inelastic strain energy density six~ten times higher than the inneer solder joint, for both the elastic-plastic-creep and viscoplastic analysis. While in underfilled FCOB assembly, the inelastic strain energy density at the outermost solder joint and inner solder joint are reduced by twenty times and two~three times, respectively, for both elastic-plastic-creep and viscoplastic analysis. The inelastic strain energy density decreases with the increase of solder height and UBM height. The introduction of underfill to the FCOB assembly couples and restricts the CTE mismatch between the silicon die and the FR4 board and increase the fatigue life.
机译:测试车辆是FCOB,芯片尺寸为4mm * 4mm * 0.52mm,间距为0.32mm,I / O阵列为13 * 13。考虑不同的焊料高度和UBM高度。使用Ansys 10.0软件通过二维平面应变有限元模型进行分析。通过在-40°C至125°C的温度范围内的加速热循环测试来测试Sn-3.5Ag焊料的可靠性。利用两种不同的本构模型,即状态变量弹塑性蠕变和粘塑性分析,模拟了温度循环下Sn-3.5Ag焊点的力学性能。寿命预测通过Darveaux能量模型进行评估。仿真结果表明,最外层的焊点具有最大的等效应变能密度。分别从关键塑性焊接点位置处的弹塑性蠕变和粘塑性分析结果中提取的等效非弹性(塑性+蠕变)应变能密度和粘塑性应变能密度,用作所采用的焊料疲劳模型的失效参数。对于非底部填充FCOB组件,在弹塑性蠕变和粘塑性分析方面,最外面的焊点的无弹性应变能密度比内部焊点的高六至十倍。在底部填充的FCOB组件中,对于弹塑性蠕变和粘塑性分析,最外层焊点和内层焊点的非弹性应变能密度分别降低了20倍和2到3倍。随着焊料高度和UBM高度的增加,非弹性应变能密度减小。在FCOB组件中引入底部填充会耦合并限制硅芯片和FR4板之间的CTE不匹配,并延长了疲劳寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号