首页> 外文会议>International Workshop on Epileptic Seizure Prediction >Impact of Computational Models for an ImprovedUnderstanding of Ictogenesis: From Single Neuronsto Networks of Neurons
【24h】

Impact of Computational Models for an ImprovedUnderstanding of Ictogenesis: From Single Neuronsto Networks of Neurons

机译:计算模型对ictogenesis的改进的影响:来自神经元的单一神经元网络

获取原文

摘要

The nervous system is a complex network composed of a huge number ofneurons [1]. The human brain contains approximately 100 billion neurons and10 million kilometers of wiring. Neurons couple to networks. They are organizedin different morphological structures and perform different functions. Like othercells neurons consist of a cell membrane which encloses the cytoplasm and the cellnucleus. Neurons can transmit electrical signals over long distances. The size andshape of neurons varies over a broad range depending on their location and specialrole in the nervous system. Regardless of this variability the basic functionality isalways the same: a neuron receives input signals, processes this input, and transfersan output signal to other neurons. Accordingly, the basic structure is the same forevery neuron. The cell body (soma) has appendages that are responsible for theinput and output of signals. A neuron usually has many input appendages (thedendrites), and one output appendage (the axon). A neuron is typically connectedwith approximately 10 000 other neurons via synapses which are located at theend of the neuron's axon. Generally, a negative electric potential difference existsbetween the extracellular and the intracellular space (extracellular potential set tozero) [1, 2], which is caused by differences in ion concentrations between the innerand the outer side of the cell membrane. Inputs received via synaptic connectionscause transmembrane currents that change the membrane potential, and eventuallycan cause the generation of an action potential or spike `[. . .] an abrupt and transientchange of membrane voltage' [3]. Action potentials can propagate along the axon toother neurons. Time sequences of these action potentials are considered the basisfor encoding information and for communication between neurons [4].
机译:神经系统是由巨大数量组成的复杂网络[1]。人脑含有约100亿个神经元和100万公里的布线。神经元夫妇到网络。它们是组织不同的形态结构并执行不同的功能。与其他细胞神经元一样,内核由包围细胞质和培训核糖核桃的细胞膜组成。神经元可以长距离传输电信号。神经元的大小和标记根据其位置和神经系统中的特殊机构而变化。无论这种可变性如何,基本功能性等于相同:神经元接收输入信号,处理该输入,并将转换输出信号处理到其他神经元。因此,基本结构是同一个永远的神经元。细胞体(SOMA)有附加的附属物,负责ININPUT和信号输出。神经元通常具有许多输入附属物(TheDEndrites)和一个输出附件(轴突)。通过位于神经元轴突的突触,神经元通常通过约10 000个其他神经元连接。通常,存在的细胞外和细胞内空间(细胞外潜在设定托Zero)[1,2]存在负电势差,这是由电池膜的外侧之间的离子浓度的差异引起的。通过Synaptic ConnectionScause跨越式电流接收的输入改变膜电位,并且最终导致产生动作潜力或尖峰`[。 。 。]膜电压的突然和短发子[3]。动作电位可以沿着轴突传播到其他神经元。这些动作电位的时间序列被认为是编码信息的基础和神经元之间的通信[4]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号