首页> 外文会议>International Conference on Frontiers of Characterization and Metrology for Nanoelectronics >Probing Optical and Electronic Properties of Individual Defects Through Scanning Transmission Electron Microscopy and First-Principles Theory
【24h】

Probing Optical and Electronic Properties of Individual Defects Through Scanning Transmission Electron Microscopy and First-Principles Theory

机译:通过扫描透射电子显微镜和第一原理理论探测各个缺陷的光学和电子性质

获取原文

摘要

The successful correction of lens aberrations has greatly advanced the ability of the scanning transmission electron microscope (STEM) to provide direct, real space imaging at atomic resolution [1], both through improved spatial resolution and through enhanced signal to noise ratio. In monolayer materials such as BN, graphene or transition metal dichalcogenides, atom-by-atom characterization of atomic position is now a practical reality [2], even using accelerating voltages below the threshold for knock-on damage. Stable point defect complexes consisting of substitutional Si and N atoms lead to spatially localized enhancement of surface plasmon resonances at the subnanometer scale, acting as an atomic antenna in the petaHertz (1015 Hz) frequency range [3]. Contrary to expectations, images of such excitations obtained through electron energy loss spectroscopy (EELS) are highly localized, sometimes even exhibiting atomic resolution. EELS can also directly probe the nature of bonding at the single atom level [4]. Examples of such phenomena are presented below, together with a theoretical simulation of EELS images that includes both the formation of the STEM probe and solid state bonding effects for the first time [5]. This combined experimental/theoretical technique represents an atomic-resolution variant of optical absorption and promises to be a powerful probe of optical, electronic, and vibrational properties of individual defects in materials.
机译:透镜像差的校正成功大大推进了扫描透射电子显微镜(STEM)的到在原子分辨率[1],均通过改进的空间分辨率和通过增强信噪比提供直接的,真实空间成像的能力。在诸如BN,石墨烯或过渡金属二硫代甲基化物的单层材料中,原子地位的原子表征现在是实际的现实[2],即使使用低于敲击损伤的阈值的加速电压也是如此。由替代Si和N原子组成的稳定点缺陷复合物导致亚晶秤上的表面等离子体共振的空间局部化增强,作为Petahertz(1015Hz)频率范围的原子天线[3]。与期望相反,通过电子能量损失光谱(EEL)获得的这种激发的图像是高度局部的,有时甚至表现出原子分辨率。鳗鱼还可以直接探测在单个原子水平下键合的性质[4]。下面呈现这种现象的实例,以及鳗鱼图像的理论模拟,其包括首次形成茎探针和固态键合效果的形成[5]。该组合的实验/理论技术代表了光学吸收的原子分辨率变体,并且有望成为材料中个体缺陷的光学,电子和振动性能的强大探针。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号