【24h】

Neuromodulation Advances in the next decade

机译:未来十年的神经调节促进

获取原文

摘要

Many nervous system disorders (e.g., Parkinson's disease, mood disorders) involve neurotransmitters as well as electrical activity. Pharmacologic treatment does not target the precise location(s) where neurotransmitter imbalances occur. Additionally, non-neuronal cells in the brain—notably astrocytes—influence neuronal activity through both electrical and neurochemical modulation of nearby neurons. Precise monitoring/recording and modulating/stimulating (both electrical and neurochemical) can optimize therapy in specific disorders and specific patients. Carbon-fiber microelectrodes (5 μm diameter) in freely moving rodents have shown that dopamine release is heterogeneous within various regions in the nucleus accumbens, a region involved in many mood disorders. Because neurons are only several microns in diameter (axons, dendrites, and synaptic clefts smaller still), ultramicroelectrodes will be essential to selectively monitor/modulate the cell body, the axon, or at the intracellular level. Nanoelectrode arrays can monitor both electrical activity and dopamine in real time with submicron resolution, and stimulate neurons with equal precision. Computational models indicate that precise monitoring/modulating (electrically and neurochemically) at the subnucleus or neuron level will be necessary to restore normal firing patterns and neurotransmitter levels in many brain disorders. Endovascular techniques can introduce ultramicroelectrodes (0.5 micron or smaller) into the brain via capillaries; such electrodes can stimulate/record neuronal tissue with a response virtually identical to extra-vascular microelectrodes. Within the next decade, hundreds if not thousands of submicron-sized monitoring/modulating electrodes can be placed wherever needed to restore brain function to normal. The term "neuromodulation" will likely replace deep brain stimulation (DBS) as both neurochemistry and electrical activity are included in the therapeutic modalities.
机译:许多神经系统疾病(例如,帕金森病,情绪障碍)涉及神经递质以及电力活动。药理治疗不靶向神经递质失衡的精确位置。另外,通过附近神经元的电气和神经化学调节,脑显着的星形细胞中的非神经元细胞 - 影响神经元活性。精确监测/记录和调节/刺激(电气和神经化学)可以优化特定疾病和特定患者的治疗。自由移动啮齿动物的碳纤维微电极(5μm直径)表明,多巴胺释放在细胞核宫内的各个区域内是异质的,这是一种涉及许多情绪障碍的区域。因为神经元仅直径几微米(轴突,树突和较小的突触裂解),超微电极是必要的,以选择性地监测/调节细胞体,轴突或细胞内水平。纳米电极阵列可以用亚微米分辨率实时监测电活动和多巴胺,并以相同的精度刺激神经元。计算模型表明,在亚核或神经元水平上精确监测/调节(电化学和神经化学)是必要的,以恢复许多脑病中的正常烧制模式和神经递质水平。血管内技术可以通过毛细管将超微电极(0.5微米或更小)引入脑中;这种电极可以刺激/记录神经元组织,几乎与超血管微电极相同的响应。在未来十年内,如果剩余数千次亚微米大小的监测/调制电极,则可以放置在恢复大脑功能到正常的情况下放置数千个亚微米大小的监控电极。术语“神经调节”可能替代深脑刺激(DBS),因为神经化学和电活动包括在治疗方式中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号