首页> 外文会议>Conference on MEMS/MOEMS Components and Their Applications >Nano-mechanical cantilever arrays for low-power and low-voltage embedded nonvolatile memory applications
【24h】

Nano-mechanical cantilever arrays for low-power and low-voltage embedded nonvolatile memory applications

机译:低功耗和低压嵌入式非易失性存储器应用的纳米机械悬臂阵列

获取原文

摘要

A new non-volatile memory technology for embedded memory applications is described. The technology uses one cantilever per cell with two stable states to store information. The two stable states are either stuck down to a landing electrode or not. Because the cantilever and landing electrodes are conducting, each cantilever can be read easily by measuring the contact resistance between the two. The cantilever stays in the 'on' state due to short range attractive forces at the contact including metal-to-metal bonding and Van der Waals forces. Using standard CMOS processing equipment and materials the cantilevers are designed to switch at the native voltages found in micro-controllers, making this technology an attractive alternative to other forms of embedded non-volatile memory as it reduces the memory block area by eliminating the requirement for charge pumps. With scaling of the cantilever geometries, the switching speed drops to below 100ns making it much faster to program and erase than FLASH and SONOS devices. The high activation energies associated with adhesion ensure that the technology is reliable over a wide temperature range. In this paper we discuss how the cantilevers are encapsulated in a wafer scale CMOS process and how the resulting micro-cavities are qualified. We will discuss how the contact adhesion forces are modeled to give controllable erasure of the cantilever into the 'off state.
机译:描述了一种用于嵌入式内存应用程序的新的非易失性存储器技术。该技术使用每个单元格的一个悬臂,两个稳定状态存储信息。两个稳定状态既达到着陆电极。因为悬臂和着陆电极导通,所以通过测量两者之间的接触电阻,可以容易地读取每个悬臂。由于在包括金属到金属粘合和范德瓦尔斯力的联系人,悬臂仍然存在于“on”状态。使用标准CMOS处理设备和材料悬臂设计用于在微控制器中发现的天然电压,使得这项技术通过消除要求减少了存储器块区域的其他形式的嵌入式非易失性存储器具有吸引力的替代品电荷泵。随着悬臂几何形状的缩放,开关速度降至100ns以下,使程序和擦除比Flash和Sonos设备更快。与粘合相关的高激活能确保该技术在宽温度范围内可靠。在本文中,我们讨论了悬臂如何封装在晶片标尺CMOS过程中以及所得的微腔的合格方式。我们将讨论如何建模接触粘附力以使悬臂可控制擦除在“关闭状态”中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号