首页> 外文会议>IPC smema council APEX exhibition conference >Utilization of No Flow Underfills for High Speed Flip Chip Applications
【24h】

Utilization of No Flow Underfills for High Speed Flip Chip Applications

机译:利用无流量底部填充用于高速倒装芯片应用

获取原文

摘要

Flip Chip Technology has begun to gain acceptance in electronics assembly due to its improved electrical performance and smaller size than most standard packages. The conventional flip chip process is not easily compatible with Surface Mount Technology (SMT) and therefore a lot of work has been done to improve the materials and processes involved. Based on this work, No Flow underfills were developed to make the flip chip process more transparent to SMT. Assembly and Cost modeling showed that no flow underfills could reduce cost by close to sixty percent when compared to conventional underfill processes ar d reduce the assembly time by close to fifty percent. The cost savings are most noticeable when the number of die per panel increases. Due to the unique qualities of No Flow underfills, a number of new processing challenges have arisen. These include the substrate design, dispense pattern, die placement, and reflow issues. Substrate design can have a great effect on the flow of the materials during dispense and placement processing steps. The dispense pattern can also affect the amount of voiding seen in the finished assemblies especially as the die size increases. As no flow materials have some viscosity, they can require a higher placement force than conventional flip chip processing. As no flow materials are designed to simultaneously reflow and cure in the same profile, the reflow process is extremely important to the yield of the components. Reliability results from various studies have shown that No Flow underfills can survive more than 1000 cycles in both Air-to-Air Thermal Cycling (AATC) and Liquid-to-Liquid Thermal Shock (LLTS). The reliability of the materials can be affected by the size of the die, the bump pattern, and the pad definition method. Failure mode analysis of the assemblies have shown that No Flow materials tend to exhibit fillet cracking and bulk underfill cracking in higher frequencies than delamination, but solder fatigue is still the main ultimate end failure.
机译:由于其提高的电气性能和小于大多数标准包装,倒装芯片技术已经开始获得电子组件的接受。传统的倒装芯片处理不易与表面贴装技术(SMT)兼容,因此已经进行了大量工作以改善所涉及的材料和过程。基于这项工作,开发了没有流量底部填充物,使倒装芯片过程更透明于SMT。与传统的底部填充工艺相比,没有将装配时间降低到55%,没有流量底部填充物可以通过接近六十百分之六十左右降低成本。当每个面板的骰子数量增加时,成本节省最引人注目。由于没有流量底部填充的独特品质,出现了许多新的处理挑战。这些包括基板设计,分配图案,模具放置和回流问题。基板设计可以在分配和放置处理步骤期间对材料的流动具有很大的效果。分配图案也可以影响成品组件中所见的空隙量,特别是因为模尺寸增加。由于没有流动材料具有一些粘度,因此它们可能需要比传统的倒装芯片处理更高的放置力。由于没有流动材料设计用于在同一轮廓中同时回流和固化,回流过程对组分的产量非常重要。各种研究的可靠性结果表明,在空气 - 空气热循环(AATC)和液 - 液热冲击(LLT)中,没有流量底部填充物可以存活超过1000个循环。材料的可靠性可能受到模具,凸块图案和垫定义方法的尺寸的影响。组件的失效模式分析表明,没有流动材料倾向于在较高频率下表现出圆角裂化和散装底部填充裂缝,但焊料疲劳仍然是主要的最终最终故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号