首页> 外文会议>PMSE Symposia >Modeling Energy Transduction in Systems of Nanoparticle-Filled Polymeric Microcapsules
【24h】

Modeling Energy Transduction in Systems of Nanoparticle-Filled Polymeric Microcapsules

机译:纳米粒子填充聚合物微胶囊系统中的能量转导

获取原文

摘要

Biological cells can communicate with each other via molecules that are released by signaling cells and recognized by receptors on the surface of target cells. This form of communication enables groups of cells to perform complicated,concerted functions. Inspired by the signaling behavior of biological cells,we recently used theory and simulation to design self-propelled microcapsules that communicate with each other via nanoparticles . This synthetic system consists of a 1 signaling microcapsule that encases nanoparticles and an initially empty target capsule. Both microcapsules are immersed in a fluid and are localized on an initially homogenously adhesive substrate. Furthermore,at the onset,both capsules are stationary. As the nanoparticles diffuse from the interior of signaling capsule and into the surrounding fluid,they can adsorb onto the substrate. Here,we assume that the adhesive strength of the substrate is reduced by the adsorbed nanoparticles. Consequently,the adsorbed nanoparticles give rise to an adhesion gradient under the target capsule that propels this capsule to move along the substrate. Through hydrodynamic interaction between the capsules,the target capsule then effectively "pulls" the signaling capsule onto the adhesion gradient. This behavior creates a self-sustained motion of both the capsules,since the adhesion gradient is now propagated due to the movement of the signaling capsule,which continues to release the nanoparticles. In effect,the released nanoparticles provide the fuel that drives the concerted motion of both the capsules. In this sense,the system displays chemo-mechanical transduction,where the chemical energy produced by the adsorption of the nanoparticles is transduced into the mechanical motion of the capsules. Ultimately,the findings could enable researchers to fabricate small-scale devices that "cooperate" to display effective forms of self-actuation,sensing,and sharing of information.
机译:生物细胞可以通过信号细胞通过信号细胞释放的分子彼此连通,并由靶细胞表面上的受体识别。这种形式的通信使小区组能够执行复杂的齐齐欲的函数。灵感来自生物细胞的信号行为,我们最近使用理论和模拟来设计通过纳米颗粒彼此通信的自推进微胶囊。该合成系统由一个1个信号微胶囊组成,其上纳米颗粒和最初空的靶胶囊组成。将两个微胶囊浸入流体中,并在最初均匀的粘合剂基材上定位。此外,在发病时,两个胶囊都是静止的。作为纳米颗粒从信号传导胶囊的内部扩散并且它们可以吸附到基材上。这里,我们假设基材的粘合强度由吸附的纳米颗粒减少。因此,吸附的纳米颗粒在靶胶囊下产生粘附梯度,该胶囊填充该胶囊以沿着基材移动。通过胶囊之间的流体动力学相互作用,然后将靶胶囊有效地将信号胶囊拉到粘附梯度上。该行为产生了两个胶囊的自持运动,因为现在由于信号囊的移动而现在繁殖的粘合梯度,这继续释放纳米颗粒。实际上,释放的纳米颗粒提供驱动胶囊齐全运动的燃料。从这个意义上讲,系统显示化学机械转导,其中通过将纳米颗粒的吸附产生的化学能被转导入胶囊的机械运动中。最终,调查结果可以使研究人员制定“合作”以显示有效形式的自致,感知和分享信息的小规模设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号