首页> 外文会议>IEEE Antennas and Propagation Society International Symposium >Fast forward solver for buried dielectric targets at low frequencies
【24h】

Fast forward solver for buried dielectric targets at low frequencies

机译:用于低频下埋地介电靶标的快速前进求解器

获取原文

摘要

Fast solutions of the electromagnetic scattering and inverse scattering by dielectric objects buried in the lossy earth are very important for near-surface geophysical exploration problems, environmental applications, and demining, detection and characterization of unexploded ordnance. Usually, a ground penetrating radar (GPR) is the electromagnetic tool of choice for such detection problems because it can provide high resolution. Unfortunately, when the electrical conductivity is high, GPR cannot penetrate far enough for many applications due to the high-frequency components. In order to achieve greater penetration in conductive earth, much lower frequencies are often used **************************************************************************************************************************************************************************************************************************************************************** **************************************************************************************************************************************************************************************************************************************************************** ques have been proposed to speed up the evaluation of matrix-vector multiply in the iterative solvers of method of moments. The fast multipole method (FMM) [1] and its multilevel cousin, the multilevel fast multipole algorithm (MLFMA) [2], rely on a multilevel geometrical partitioning of the problem space and an expansion of the scattered field in spherical harmonics. The conjugate-gradient fast-Fourier-transform (CG-FFT) method [3] is a powerful fast algorithm but it works only when the object is modeled with uniform rectangular grids which necessitates a staircase approximation in the modeling of an arbitrary geometry. The adaptive integral method (ATM) [4] projects triangular elements onto uniform grids with the aid of auxiliary basis functions and then carries out the matrix-vector multiplication by the fast Fourier transforms (FFT). The precorrected-FET method was originally proposed by Philips and White [5] to solve the electrostatic problems. It was extended by the authors recently to solve 3-D scattering problems in flee space [6] and to analyze large-scale microstrip structures [7]. In [6], the precorrected-FFT formulations for only the electric field integral equation (EFIE) are presented. As we know, a combination of the EFIE and MEW, namely the combined field integral equation (CFIE), has been found to be able to eliminate the interior resonance problem suffered by both EFIE and MFIE and to converge much faster than EFIE and MEW [8]. In comparison with the AIM, the present method can achieve good results of the same accuracy, but with a grid spacing at least two to three times larger than that of AIM. So in normal cases, the number of the grids is of a level of O(N), the precorrected-FFT method is at best an approach of O(N) (memory requirement) and O(NlogN) (computational complexity) requirements [6]. It should be also noted that in this paper, the algorithm is implemented in a way that no eatra computational expense is required as compared with those in EFIE, which leads to another advantage over the AIM based method reported in [8].
机译:电磁散射和偏离损耗地球中的介电物体的逆散射的快速解决方案对于近表面地球物理勘探问题,环境应用和排雷,检测和表征是非常重要的。通常,地面穿透雷达(GPR)是用于这种检测问题的选择性的电磁工具,因为它可以提供高分辨率。遗憾的是,当电导率高时,由于高频分量,GPR不能足够远渗透到许多应用。为了在导电地球中取得更大的渗透,经常使用得多较低的频率********************************** ************************************************** ************************************************** ************************************************** ************************************************** ********************** ****************************** ************************************************** ************************************************** ************************************************** ************************************************** ****************************已提议加快矩阵矢量的评估,在瞬间方法的迭代求解器中。快速多极方法(FMM)[1]及其多级堂兄,多级快速多极算法(MLFMA)[2],依赖于问题空间的多级几何分区和球形谐波中的散射场的扩展。共轭梯度快速傅里叶变换(CG-FFT)方法[3]是一种强大的快速算法,但仅当对象用均匀矩形网格建模时,它仅适用于需要在任意几何形状的建模中阶梯逼近的阶梯近似。自适应积分方法(ATM)[4]借助于辅助基函数将三角形元素投射到统一网格上,然后通过快速傅里叶变换(FFT)执行矩阵矢量乘法。预先采用飞利浦和白色提出了预先腐烂的FET方法,以解决静电问题。作者近来延伸到逃离空间[6]中的三维散射问题并分析大规模微带结构[7]。在[6]中,呈现仅用于电场积分方程(EFIE)的预制-FFT配方。如我们所知,已发现EFIE和MEW的组合,即组合的字段积分方程(CFIE)能够消除efie和mfie两个遭受的内部共振问题,并且比efie和mew收敛要快得多[ 8]。与目的相比,本方法可以达到相同精度的良好效果,但是网格间隔至少两到三倍大于目标。因此,在正常情况下,网格的数量是o(n)的水平,预先接收-FFT方法是O(n)(内存要求)和o(nlogn)(计算复杂性)的方法的最佳方法[ 6]。还应该注意的是,在本文中,算法以与EFIE中的那些相比,不需要eATRA计算费用,这导致了[8]中报告的基于目的方法的另一个优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号