首页> 外文会议>Conference on optical diagnostics of living cells and biofluids >Actin-cytoskeleton and glial cell transformation: dissecting the morphological and molecular dynamics of tumorigenesis using light microscopy
【24h】

Actin-cytoskeleton and glial cell transformation: dissecting the morphological and molecular dynamics of tumorigenesis using light microscopy

机译:肌动蛋白 - 细胞骨架和胶质细胞转化:使用光学显微镜对肿瘤发生的形态和分子动力学进行解剖

获取原文

摘要

A glioma produces some of the most rapidly growing, angiogenic, and invasive primary brain tumor cells known. A lack of understanding about the intricately coupled molecular mechanisms that result in cell transformation is responsible, in part, for the minimal progress made in treating this disease over the past century. To begin dissecting molecular interrelationships in time and space within living normal and transformed cells, a morphological assay is being developed wherein patient-derived tumor cells are allowed to attach to a substrate, spread, change shape, and locomote. During this process (approximately 6.5 h), low magnification phase contrast images of the cells are recorded at 1 min intervals. Quantitative image analyses of these time-lapse images are used to measure dynamic parameter such as projected cell area, shape, and displacement for each cell. Although there is considerable cellular heterogeneity, patterns of patient-specific tumor cell behavior are beginning to emerge. In addition, the assay is being used to test the effects of drugs that alter specific intracellular processes (e.g., cytochalasin, 2-deoxyglucose, and chemotherapeutic drugs). To dissect tumor cell physiology into its molecular components, I have focused on the actin-cytoskeleton because it is involved in the temporal and spatial orchestration of ions, metabolites, macromolecules, and organelles that underlies the interconnected processes of tumor cell growth, motility, and differentiation. I have used fluorescent analogs of actin and its associated proteins in conjunction with multimode-based light microscopy of living cells to measure the complex interrelationships responsible for motility in patient-derived normal and transformed glia. I have simultaneously measured the dynamics of actin assembly and focal contact formation using new fluorescent analogs of actin and vinculin in single migrating human glioblastoma cells and used this information to begin developing a molecular model of tumor cell migration. By engineering new protein-based reagents and fluorescence spectroscopic methodologies we will be able to measure and manipulate a greater number of molecular processes and therefore further refine the model. The ultimate goal of this work is to use living cells to diagnose and design treatment for primary brain tumors in a more patient- specific manner.
机译:胶质瘤产生一些最快的血管生成和侵入性的原发性脑肿瘤细胞。缺乏关于导致细胞转化的错综复杂的分子机制的理解,部分原因是在过去的世纪治疗这种疾病的最小进展。为了开始在生活中的时间和变化细胞内的时间和空间中疏忽分解分子相互关系,正在开发一种形态学测定,其中允许患者衍生的肿瘤细胞连接到基材上,涂抹,变化形状和小族。在该过程(约6.5小时)期间,将细胞的低放大相位对比图像以1分钟的间隔记录。这些时间流逝图像的定量图像分析用于测量每个单元的动态参数,例如投影的小区区域,形状和位移。尽管存在相当大的细胞异质性,但是患者特异性肿瘤细胞行为的模式开始出现。此外,该测定用于测试药物改变特异性细胞内方法的药物(例如细胞蛋白酶,2-脱氧葡萄糖和化学治疗药物)的作用。将肿瘤细胞生理学分解成其分子组分,我专注于肌动蛋白 - 细胞骨架,因为它涉及离子,代谢物,大分子和细胞器的时间和空间编排,使肿瘤细胞生长,运动和运动的相互联系的过程进行互连的过程。差异化。我用肌动蛋白及其相关蛋白的荧光类似物结合活细胞的多模光学显微镜,以测量负责患者衍生的正常和转化的峡谷中的运动性的复杂相互关系。我同时测量了使用肌动蛋白和vinculin的新荧光片段在单一迁移的人胶质细胞瘤细胞中测量肌动蛋白组件和焦平接触形成的动态,并利用这些信息开始开发肿瘤细胞迁移的分子模型。通过工程新的基于蛋白质的试剂和荧光光谱方法,我们将能够测量和操纵更多数量的分子过程,因此进一步细化模型。这项工作的最终目标是使用活细胞以更具患者特异性的方式诊断和设计对原发性脑肿瘤的治疗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号