【24h】

Resist cross-sectioning using focused ion beams

机译:使用聚焦离子束抵抗横截面

获取原文

摘要

This paper reports the results of efforts to find conditions under which FIB technology can be used to cross-section resist features. Evaluation of the accuracy of these cross-sections and the convenience or speed relative to cleaving is examined. FIB cross sections through a staggered window pattern on the edge of cleaved segment from a 0.4 $mu@m thick novolac (mp 2400-17) coated Si wafer showed that the ion beam milling relieves the taper present on the profile, and enlarges the dimensions of the smaller features (0.6 $mu@m windows). These effects are due to the near-maximum sputter yield at the angel that the resist side wall presents to the ion beam, the size of the ion beam relative to the feature size, and the dose used to cut the section. Alterations in the resist geometry can be minimized by using the lowest possible doses to image and cut the desired features. Redeposition of sputtered material in the window openings does not appear to be a problem. All of the work in this study involves uncoated resist, for both FIB cutting and SEM imaging. A technique for sectioning line and space patterns and then measuring the line profile at any point on a full wafer has been worked out. This technique fulfills the potential speed advantage of FIB ion milling over cleaving. Features in a 7 $MUL 7 array printed on a 12 cm wafer were ion milled at an angle of 45$DGR to the wafer surface by dose variation, giving a wedge-shaped trough in the wafer. When tilted to 45$DGR in the SEM, the angled wall of the wedge cut presents a surface that is normal to the electron beam, just as in the edge mounting of a cleaved section. Contrast enhanced digital images allow measurement of the line profile, which was found to be accurate within the limits imposed by the ion beam width.
机译:本文报告了努力的结果,找到了FIB技术可用于跨截面抗蚀剂特征的条件。研究了这些横截面的准确性的评价以及相对于切割的便利性或速度。通过0.4 $ MU @ M厚的诺洛杉矶(MP 2400-17)涂覆的Si晶片,通过交错窗图通过交错窗图案的交错窗图案,涂覆的Si晶片表明,离子束铣削使曲线上存在于曲线上的锥度,并扩大尺寸较小的功能(0.6 $ MU @ M Windows)。这些效果是由于天使的近最大溅射产率,抗蚀剂侧壁向离子束呈现给离子束,相对于特征尺寸的离子束的尺寸,以及用于切割该部分的剂量。可以通过使用最低可能的图像来最小化抗蚀剂几何形状的改变,并切割所需的特征。在窗口开口中溅射材料的重新定位似乎不是问题。本研究的所有工作涉及无涂层抗蚀剂,用于FIB切割和SEM成像。已经制定了一种用于切割线和空间图案的技术,然后在完整晶片上的任何点测量线轮廓。该技术实现了FIB离子研磨在切割上的潜在速度优势。通过剂量变化,在12厘米晶片上印有7厘米晶片的7 $ MUL 7阵列中印有4厘米的晶片,以晶片表面为离子铣削,在晶片中呈楔形槽。当SEM中倾斜至45美元的DGR时,楔形切割的成角度壁呈现在电子束上正常的表面,就像在切割部分的边缘安装一样。对比度增强的数字图像允许测量线轮廓,这在离子束宽度施加的限度内被发现精确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号