首页> 外文会议>International Conference and Exhibition of the SIA Powertrain >Fuel Economy Benefits of Electrified Powertrains with Advanced Combustion Engines: Mild to Strong HEV Applications
【24h】

Fuel Economy Benefits of Electrified Powertrains with Advanced Combustion Engines: Mild to Strong HEV Applications

机译:带有先进燃烧发动机的电气化动力推动发动机的燃油经济性:轻度至强大的HEV应用

获取原文

摘要

Powertrain electrification including hybridizing advanced combustion engines is a viable cost-effective solution to improve fuel economy of vehicles. This will provide opportunity for narrow-range high-efficiency combustion regimes to be able to operate and consequently improve vehicle's fuel conversion efficiency, compared to conventional hybrid electric vehicles. Low temperature combustion (LTC) engines offer the highest peak brake thermal efficiency reported in literature, but these engines have narrow operating range. In addition, LTC engines have ultra-low soot and NO_x emissions, compared to conventional compression ignition and spark ignition (SI) engines. In this study, advanced easily verifiable optimal control techniques are employed as the energy management supervisory controller to investigate hybridization of multi-mode LTC-SI engines for applications ranging from mild to strong hybrid electric vehicles (HEVs). A multi-mode LTC-SI engine is experimentally developed at Michigan Tech. University and the engine operating modes include homogeneous charge compression ignition (HCCI), reactivity controlled compression ignition (RCCI), and conventional SI. The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations. Moreover, the engine emissions are controlled by considering the catalytic convertor light-off temperature in the control framework for selecting the engine operating points. The developed multi-mode engine is analysed in series architecture and P2 parallel architecture in various hybridization levels.
机译:动力总成电气化包括杂交的先进燃烧发动机是一种可行的成本效益的解决方案,可以提高车辆的燃油经济性。与传统的混合动力电动车辆相比,这将为能够操作的窄范围的高效燃烧制度提供机会,从而能够改善车辆的燃料转换效率。低温燃烧(LTC)发动机提供文献中报告的最高峰值制动热效率,但这些发动机的操作范围窄。此外,与传统的压缩点火和火花点火(Si)发动机相比,LTC发动机具有超低烟灰和NO_X排放。在本研究中,采用先进的易于可验证的最佳控制技术作为能量管理监控控制器,以研究从轻度到强杂交电动车(HEV)的应用范围的多模LTC-SI发动机的杂交。 Michigan Tech实验开发了一种多模LTC-SI引擎。大学和发动机操作模式包括均匀电荷压缩点火(HCCI),反应性控制压缩点火(RCCI)和常规Si。动力总成控制器旨在使不同模式的切换能够在不同的模式下切换,具有最小的瞬态发动机操作的燃料损失。此外,通过考虑控制框架中的催化转换器光脱液温度来控制发动机排放来选择用于选择发动机操作点。在各种杂交水平中,在串联架构和P2并行架构中分析了开发的多模式发动机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号