首页> 外文学位 >Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE).
【24h】

Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE).

机译:使用高级燃烧发动机(FACE)的燃料在低温燃烧过程中纳米颗粒排放物的浓度和尺寸分布。

获取原文
获取原文并翻译 | 示例

摘要

Due to tightening emission legislations, both within the US and Europe, including concerns regarding greenhouse gases, next-generation combustion strategies for internal combustion (IC) diesel engines that simultaneously reduce exhaust emissions while improving thermal efficiency have drawn increasing attention during recent years. In-cylinder combustion temperature plays a critical role in the formation of pollutants as well as in thermal efficiency of the propulsion system. One way to minimize both soot and NOx emissions, is to limit the in-cylinder temperature during the combustion process by means of high levels of dilution via exhaust gas recirculation (EGR) combined with flexible fuel injection strategies. However, fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall combustion characteristics and the resulting emissions. The Advanced Vehicles, Fuels, and Lubricants (AVFL) committee of the Coordinating Research Council (CRC) specified and formulated a matrix of nine test fuels for advanced combustion engines (FACE) based on the variation of three properties: cetane number, aromatic content, and 90 percent distillation temperature.;The primary objective of this study was to study the effects of various FACE diesel fuels on the nanoparticle formation during low temperature combustion processes. An experimental study was performed at West Virginia University's Engine and Emission Research Laboratory (EERL) to determine the FACE property effects on the low temperature combustion (LTC) process in a turbo-charged GM 1.9L light-duty compression ignition engine under steady-state operating conditions (2100rpm/3.5bar BMEP). A comprehensive test matrix was developed including intake oxygen (O2), as a surrogate for EGR fractions, and rail-pressure parameter variations during single injection timing settings. Furthermore, the influence of varying injection timing and fuel fraction during split injection strategy onto nanoparticles was investigated as well.;Diluted exhaust gas emissions extracted from the CVS tunnel were measured continuously using a Horiba MEXA-7200D gaseous emissions analyzer and included total hydrocarbons (THC), carbon monoxide (CO) as well as carbon dioxide (CO 2) and oxides of nitrogen (NOx). NOx and O 2 concentrations were measured in the raw exhaust and intake manifold using Horiba MEXA-720 NOx analyzers, respectively.;Furthermore, the AVL Micro Soot Sensor, consisting of a measuring unit and an exhaust conditioning unit, was used to measure the soot concentration in the raw exhaust based on the photoacoustic measurement method.;Nanoparticle concentration and size distributions were determined using the Exhaust Emissions Particle Sizer (EEPS(TM)) spectrometer from TSI Inc. (model 3090) as well as the Differential Mobility Spectrometer (DMS) from Cambustion (model DMS500). Continuous exhaust gas samples were extracted from the CVS tunnel (dilution ratio DR ≈ 10) and routed through a double stage dilution system using ejector type dilutors. The first stage was maintained at 140°C (DR ≈ 6) in order to suppress condensation and particle nucleation phenomena, while the second stage utilized dilution air at ambient temperatures (∼25°C, DR ≈ 11).;Particle number concentration increased with a simultaneous increase in particle diameter for both single and split injection strategies in case of FACE diesel fuels with increasing CN for the low NOx, low soot and highest BTE tests. Advancing the start of injection timing led to a decrease in particle number concentration, but a simultaneous increase in nanoparticle emissions was observed for low CN fuels.
机译:由于美国和欧洲的排放法规越来越严格,包括对温室气体的担忧,因此,新一代的内燃机(IC)柴油发动机燃烧策略在减少废气排放的同时提高了热效率,近年来引起了越来越多的关注。缸内燃烧温度在污染物的形成以及推进系统的热效率中起着至关重要的作用。最小化烟尘和NOx排放的一种方法是通过排气再循环(EGR)进行高浓度稀释并结合灵活的燃料喷射策略来限制燃烧过程中的缸内温度。但是,燃料化学成分在点火延迟中起着重要作用。因此,会影响整体燃烧特性和产生的排放。协调研究委员会(CRC)的高级车辆,燃料和润滑油委员会(AVFL)委员会根据十六烷值,芳烃含量,以及90%的蒸馏温度。该研究的主要目的是研究各种FACE柴油对低温燃烧过程中纳米颗粒形成的影响。在西弗吉尼亚大学的发动机和排放研究实验室(EERL)进行了一项实验研究,以确定FACE特性对稳态状态下涡轮增压GM 1.9L轻型压缩点火发动机的低温燃烧(LTC)过程的影响。工作条件(2100rpm / 3.5bar BMEP)。开发了一个全面的测试矩阵,其中包括进气氧(O2)(作为EGR分数的替代物)和单喷射正时设置期间的轨压参数变化。此外,还研究了分流喷射策略期间喷射定时和燃料分数的变化对纳米颗粒的影响。;使用Horiba MEXA-7200D气体排放分析仪连续测量从CVS隧道提取的稀释废气排放,并包括总烃(THC)。 ),一氧化碳(CO)以及二氧化碳(CO 2)和氮氧化物(NOx)。使用Horiba MEXA-720 NOx分析仪分别测量原始排气和进气歧管中的NOx和O 2浓度;此外,AVL微型烟尘传感器由测量单元和排气调节单元组成,用于测量烟尘基于光声测量方法的原始废气中的浓度。纳米粒子的浓度和尺寸分布是使用TSI Inc.的废气排放粒度仪(EEPS™)光谱仪(型号3090)和差动迁移率光谱仪(DMS)确定的)(来自Cambustion(型号DMS500)。从CVS隧道中提取出连续的废气样品(稀释比DR≈ 10),并使用喷射器型稀释器将其通过双级稀释系统。为了抑制冷凝和颗粒成核现象,第一阶段保持在140°C(DR≈ 6),而第二阶段利用环境温度(〜25°C,DR≈ 11)的稀释空气。对于FACE柴油,在低NOx,低烟灰和最高BTE测试中,CN浓度增加时,单次和分批喷射策略的浓度随粒径的增加而增加。提前开始喷射正时导致颗粒数目浓度的降低,但是对于低氯化萘燃料,观察到纳米颗粒排放的同时增加。

著录项

  • 作者

    Bonsack, Peter.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Engineering Mechanical.;Engineering Automotive.
  • 学位 M.S.
  • 年度 2012
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号