首页> 外文会议>ASMS Conference on Mass Spectrometry and Allied Topics >Microfluidic Chip Electrophoresis/Mass Spectrometry Interface Designed to Function with Low Electroosmotic Flow for the Analysis of Proteins
【24h】

Microfluidic Chip Electrophoresis/Mass Spectrometry Interface Designed to Function with Low Electroosmotic Flow for the Analysis of Proteins

机译:微流体芯片电泳/质谱界面设计用于用低电渗流量进行功能,用于分析蛋白质

获取原文

摘要

Microfluidic devices have a great potential for integration of fast separations and sample preparation steps prior to MS analysis. The coupling of microfluidic device with ESI/MS provides an excellent platform for proteomic investigations. However, coupling of electrokinetically driven microfluidic systems, that use electrokinetic valving and can employ microchannel electrophoretic separations, have proven to be difficult to couple with ESI/MS. To minimize protein adsorption, coatings, which minimize surface charge, such as polyethylene glycol (PEG) are used. While such coatings minimize protein adsorption, they also minimize the bulk flow of solution, driven by electroosmotic flow (EOF), through the channel. Creating a stable electrospray from the microfluidic device requires application of the appropriate voltage at the tip and a flow rate that is compatible with the spray tip voltage. When microchannel or capillary electrophoresis is performed upstream of the electrospray, an intermediate electrode is needed to act as a current sink before the electrospray tip. Without this current sink through an intermediate electrode, the voltage drop across the separation channel is much lower than desired to achieve a separation with high efficiency as shown in Figure 1. For systems with low electroosmotic flow, a major challenge is minimizing analyte migration to this intermediate electrode that sets the ESI voltage. Additionally, it is desirable to remove the electrode from the microfluidic channel to spatially remove electrochemical reactions that can alter the sample, produce gas bubbles, and induce pH drift.
机译:微流体装置具有在MS分析之前的快速分离和样品制备步骤的集成潜力。微流体装置与ESI / MS的偶联为蛋白质组学研究提供了优异的平台。然而,使用电动阀和可以采用微通道电泳分离的电动驱动的微流体系统的耦合已经证明难以与ESI / MS耦合。为了最小化蛋白质吸附,使用涂层,其最小化表面电荷,例如聚乙二醇(PEG)。虽然这种涂层最小化蛋白质吸附,但它们还通过通道最小化由电渗流(EOF)驱动的溶液的散装流动。从微流体装置中形成稳定的电喷雾需要在尖端处施加适当的电压和与喷射尖端电压兼容的流速。当微通道或毛细管电泳在电喷雾的上游进行时,需要中间电极以在电喷雾尖端之前用作电流水槽。如果没有该电流通过中间电极,则分离通道上的电压降低得多,以实现高效率的分离,如图1所示。对于具有低电渗流的系统,主要挑战最小化了分析物迁移设置ESI电压的中间电极。另外,期望从微流体通道移除电极以在空间上除去可以改变样品的电化学反应,产生气泡,并诱导pH漂移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号