首页> 外文会议>International Astronautical Congress >Onboard autonomous management system of SPARK Earth observation microsatellites
【24h】

Onboard autonomous management system of SPARK Earth observation microsatellites

机译:火花地球观测微卫星的船上自治管理系统

获取原文

摘要

Space remote sensing has played a key role in numerous fields, such as resource exploration, disaster prevention, and environmental protection. Many countries have been attracted to research the Earth observation microsatellite because of its short development period, low cost, and high return. With the increasing number of in-orbit satellites, however, traditional ground management way (TT&C) has caused a heavy workload, and is error-prone and time-consuming. That makes increasingly urgent demand for the onboard autonomous management ability of satellites. As the onboard resources of microsatellites are extremely limited, the implementation of onboard autonomous management is especially difficult. This paper addresses an onboard autonomous management system for Earth observation microsatellites with double processors. A concurrent CAN bus architecture is designed to avoid affecting original onboard systems. As a node on the CAN bus, the autonomous management system (AMS) runs independently on a single FPGA with extra SRAMs. By transmitting, receiving, and listening, the AMS can communicate with original housekeeping system and other subsystems. For Earth observation microsatellites, the AMS mainly focuses on the autonomous generation of command sequences of observation and data transmission tasks. To satisfy multiple complex constraints and low computational cost, a new dynamic value based heuristic planning (DVHP) method is proposed for the multi-area-target observation of microsatellites. Additionally, an efficient rotational-path decomposition based recursive planning (RDRP) method is adopted for the attitude reorientation under bounded and pointing constraints. The AMS has been successfully applied in two SPARK microsatellites launched on 22 December, 2016, which were developed by the Shanghai Engineering Center for Microsatellites. Microsatellite experiment results demonstrate that under very limited onboard computing resources (32MHz processor, 2MB RAM), the
机译:空间遥感在众多领域发挥了关键作用,例如资源勘探,防灾和环境保护。由于其较短的开发期,低成本和高回报,许多国家已被研究进入地球观测微卫星。然而,随着越来越多的轨道卫星,传统的地面管理方式(TT&C)导致了繁重的工作量,并且易于易于耗时且耗时。这对卫星的船上自主管理能力进行了巨大的需求。由于微透露术的船坞资源极为有限,因此船上自治管理的实施尤为困难。本文用双处理器解决了地球观测微卫星的板载自主管理系统。并发CAN总线架构旨在避免影响原始车载系统。作为CAN总线上的节点,自主管理系统(AMS)在具有额外SRAM的单个FPGA上独立运行。通过传输,接收和侦听,AMS可以与原始内务系统和其他子系统通信。对于地球观测微透露术,AMS主要侧重于观察和数据传输任务的自主代的命令序列。为了满足多种复杂的约束和低计算成本,提出了一种新的基于动态值的启发式规划(DVHP)方法,用于微卫星的多面积目标观察。另外,基于有效的旋转路径分解的递归计划(RDRP)方法在有界和指向约束下进行姿态重新定位。 AMS已成功应用于2016年12月22日推出的两种火花微露披露,由上海工程中心进行微卫星开发。微卫星实验结果表明,在非常有限的板载计算资源(32MHz处理器,2MB RAM)下,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号