首页> 外文会议>Asia-Pacific Symposium on Engineering Plasticity and Its Applications >Plasticity in the Mechanical Behaviour of Cardiovascular Stersts during Stent Preparation (crimping) and Placement (expansion)
【24h】

Plasticity in the Mechanical Behaviour of Cardiovascular Stersts during Stent Preparation (crimping) and Placement (expansion)

机译:支架制备(压接)和放置期间心血管置于心血管的力学行为的可塑性(膨胀)

获取原文

摘要

In Western countries, cardiovascular disease is the most common cause of death, often related to atherosclerosis which can lead to a narrowing of the arteries. To restore perfusion of downstream tissues, an intravascular stent (i.e. a small tube-like structure) can be deployed in the obstructed vessel. The vast majority of stents are balloon expandable and crimped on a folded balloon to obtain a low profile for deliverability and lesion access. Several studies have exploited the finite element method to gain insight in their mechanical behaviour or to study the vascular reaction to stent deployment. However, to date - to the best of our knowledge - none of them include the balloon itself in its actual folded shape. Furthermore, literature on the effect of the crimping process on the expansion behaviour of the stent is even scarcer. Our numerical results -accounting for the presence of the balloon in its actual folded shape - correspond very well with data provided by the manufacturer and consequently our approach could be the basis for new realistic computational models of angioplasty procedures. The plastic deformation, prior to the stent expansion and induced by the crimping procedure, has a minor influence on the overall expansion behaviour of the stent but nevertheless influences the maximum von Mises stress and nominal strain. The maximum von Mises stress drops from 440 N/mm~2 to 426 N/mm~2 and the maximum nominal strain value lowers from 0.23 to 0.22 at the end of the expansion phase when neglecting the presence of the residual stresses. Depending on the context in which to use the developed mathematical models, the crimping phase can be discarded from the simulations in order to speed up the analyses.
机译:在西方国家,心血管疾病是最常见的死因,通常与动脉粥样硬化有关,这可能导致动脉缩小。为了恢复下游组织的灌注,可以在阻塞的容器中展开血管内支架(即小管状结构)。绝大多数支架是气球可膨胀和卷曲在折叠的球囊上,以获得较低的传递性和病变进入。几项研究利用了有限元方法,以获得其机械行为的洞察力,或者研究对支架部署的血管反应。然而,迄今为止 - 据我们所知 - 这些都没有包括其实际折叠形状的气球本身。此外,关于压接过程对支架膨胀行为的影响的文献甚至是稀缺的。我们的数值结果 - 在其实际折叠形状中占气球的存在 - 与制造商提供的数据相对应,因此我们的方法可以是血管成形术手术的新现实计算模型的基础。在支架膨胀和压接程序诱导之前,塑性变形对支架的整体膨胀行为进行了微小的影响,但仍然影响最大von误判应力和标称菌株。最大von误判应力从440 n / mm〜2到426 n / mm〜2下降,并且当忽略疏忽阶段的末端时,最大标称应变值在忽略残留应力的存在时从0.23到0.22降低。根据使用开发的数学模型的上下文,可以从模拟中丢弃压接阶段以加速分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号