首页> 外文期刊>Key Engineering Materials >Plasticity in the Mechanical Behaviour of Cardiovascular Stents during Stent Preparation (crimping) and Placement (expansion)
【24h】

Plasticity in the Mechanical Behaviour of Cardiovascular Stents during Stent Preparation (crimping) and Placement (expansion)

机译:支架准备(卷曲)和放置(扩展)过程中心血管支架机械行为的可塑性

获取原文
获取原文并翻译 | 示例
           

摘要

In Western countries, cardiovascular disease is the most common cause of death, often related to atherosclerosis which can lead to a narrowing of the arteries. To restore perfusion of downstream tissues, an intravascular stent (i.e. a small tube-like structure) can be deployed in the obstructed vessel. The vast majority of stents are balloon expandable and crimped on a folded balloon to obtain a low profile for deliverability and lesion access. Several studies have exploited the finite element method to gain insight in their mechanical behaviour or to study the vascular reaction to stent deployment. However, to date - to the best of our knowledge - none of them include the balloon itself in its actual folded shape. Furthermore, literature on the effect of the crimping process on the expansion behaviour of the stent is even scarcer. Our numerical results -accounting for the presence of the balloon in its actual folded shape - correspond very well with data provided by the manufacturer and consequently our approach could be the basis for new realistic computational models of angioplasty procedures. The plastic deformation, prior to the stent expansion and induced by the crimping procedure, has a minor influence on the overall expansion behaviour of the stent but nevertheless influences the maximum von Mises stress and nominal strain. The maximum von Mises stress drops from 440 N/mm~2 to 426 N/mm~2 and the maximum nominal strain value lowers from 0.23 to 0.22 at the end of the expansion phase when neglecting the presence of the residual stresses. Depending on the context in which to use the developed mathematical models, the crimping phase can be discarded from the simulations in order to speed up the analyses.
机译:在西方国家,心血管疾病是最常见的死亡原因,通常与动脉粥样硬化有关,可导致动脉狭窄。为了恢复下游组织的灌注,可以在阻塞的血管中部署血管内支架(即,小的管状结构)。绝大多数支架是可扩张的,可卷曲在折叠的球囊上,从而获得较低的轮廓,以实现可输送性和病变进入。几项研究已经利用有限元方法来了解其机械行为或研究血管对支架展开的反应。然而,据我们所知,迄今为止,没有一个气球具有其实际折叠形状。此外,关于压接过程对支架的膨胀行为的影响的文献甚至更少。我们的数值结果-解释了气球实际折叠形状的存在-与制造商提供的数据非常吻合,因此,我们的方法可以成为血管成形术新的现实计算模型的基础。在支架膨胀之前并由压接过程引起的塑性变形对支架的整体膨胀性能影响很小,但仍会影响最大冯·米塞斯应力和标称应变。当忽略残余应力的存在时,最大的冯·米塞斯应力从440 N / mm〜2下降到426 N / mm〜2,最大标称应变值在膨胀阶段结束时从0.23下降到0.22。根据使用开发的数学模型的环境,可以从仿真中放弃压接阶段,以加快分析速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号